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Lately I have been spending a lot of time thinking about how graphs
evolve over time.

These sorts of graphs emerge from a variety of settings: economics,
recommender systems, robotics, population modeling, ...

Beyond modeling and data science, stochastically evolving graphs appear
naturally in statistics, Markov chain sampling algorithms, and
combinatorics.
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Usually when one considers a Markov kernel P on a state space X , one is
interested in questions such as:

▶ Stationary state: What does the average long-term behavior of the
system look like?

▶ Mixing time: How many steps are required until the system is
approximately stationary?

▶ Inverse questions: If I have a distribution π on X , can we
construct a rapidly mixing kernel P with stationary state π?
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We consider the setting where X consists of graphs, specifically labelled
subgraphs of some host graph H = (V, E). Assume |V| = n and |E| = m.

This setting attracts a lot of interest from the computer science
community, but relatively little diversity on the “purely” combinatorial
side.

Thus the goal of this talk is to share some nice progress in this direction.
We will:

▶ Introduce a family of stochastically evolving graph models based on
edit semigroups;

▶ Explain how the spectral properties (and hence mixing times) of
these processes can be characterized tightly;

▶ Look forward to the future and discuss possible applications in deep
learning.
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Setup
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An edit is simply an idempotent map x : 2E → 2E .

An edit can be simple, affecting only one edge:

e+ : E 7→ E ∪ {e},
e− : E 7→ E \ {e},

where e ∈ E .

Or, an edit can be compound, affecting multiple edges, e.g.,

x = e+1 e
+
2 e

−
3 . (0.1)
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It can be helpful to think of edits as cards in a deck, like so:

H

. . .

“simple” deck

. . .

an example “compound” deck
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This setup leads to a Markov process on the set of labelled subgraphs:

Given a
subgraph

Sample an edit
from your deck

Apply the edit

. . .
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These processes can be viewed as random walks on state graphs:
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Analysis
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If the deck D consists only of simple edits, we don’t need anything fancy
to understand the stationary state:

Proposition (SR, Chung ’25)

Let H be a given host graph, and let w ∈ RD be a fully supported sampling
distribution on the deck D of simple edits. Then the graph edit Markov chain
(Gt = (V,Et))t≥0 satisfies the following properties:

1. (Gt)t≥0 is irreducible and aperiodic,

2. (Gt)t≥0 has a unique stationary state π; and if w(e+) + w(e−) = 1/m
for each e ∈ E, π is edge-independent and satisfies

P(V,E)∼π[e ∈ E ] = w(e+), e ∈ E. (0.2)

3. and (Gt)t≥0 is reversible with respect to π.

Compound edit processes are more complicated and need to be handled
on a case-by-case basis.
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But what about mixing times?

In the simple case, we expect roughly Θ(m logm) by a coupon-collecting
argument.

Can we say more?
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Consider for a moment the case of simple edits. These generate a
semigroup, which we’ll call the graph edit semigroup:

S = ⟨e+, e− : e ∈ E⟩.

Elements of this semigroup satisfy two properties:

▶ (idempotence) x2 = x for each x ∈ S,
▶ (memorylessness) xyx = xy for each x , y ∈ S.

This makes S a left regular band.
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The graph edit Markov chain is thus a random walk on the elements of
S, subject to:

P(x , y) =
∑
z∈S
zx=y

wz , x , y ∈ S.

where w ∈ RS is the sampling distribution defined on our “deck” of
simple edits.

For x , y ∈ S, write x ≺ y whenever yx = y , and x ≃ y if x ≺ y and
y ≺ x .

Then the quotient S/ ≃ is a lattice and is isomorphic to the Boolean
algebra 2E via the support map supp : S → 2E .
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The eigenvalues of P are naturally understood in terms of this lattice.

Theorem (Chung, SR, ’25)

The matrix P is diagonalizable and has an eigenvalue with multiplicity one for
each subset T ⊆ E given by

λT =
∑
y∈S

supp(y)⊆T

wy . (0.3)

In the case where the sampling distribution splits as a product over the
edges, i.e., each step consists of sampling an edge e uniformly at random
and then adding (resp. deleting) it with a probability pe (resp. 1− pe),
this takes the form:

λT =
|T |
m

. (0.4)

Thus the spectral gap of such a walk is Ω(1/m).
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This leads to an estimate on the mixing time:

Theorem (Chung, SR, ’25)

Let (Gt)t≥0 be obtained from the simple edit process with sampling distribution

we+ =
pe

m
, we− =

1− pe

m
, e ∈ E,

and initial state G0 = (V,E0), and let π denote the corresponding stationary
distribution. Then, for each t ≥ 2m logm, we have

∥Pt(E0, ·)− π∥TV ≤ 2m

(
1−

1

m

)t

. (0.5)

In particular, if c > 0 is given, we have

∥Pt(E0, ·)− π∥TV ≤ e−c

provided t ≥ m(c + 2 logm).
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In the compound setting where D is a deck of any selection of edits, we
consider the sub-semigroup of S generated by these edits instead.

The quotient ⟨D⟩/ ≃ is the join semilattice D isomorphic to the edge
supports of each x ∈ D closed under set union.

Theorem (Chung, SR, ’25)

Consider the random walk on ⟨D⟩ with sampling distribution w ∈ RD with
transition probability matrix P. Then P is diagonalizable and has eigenvalues
indexed by elements T ∈ D, each of which is identified as a subset of E, with
corresponding eigenvalue

λT =
∑

x∈⟨D⟩
supp(x)⊆T

wx .

The multiplicity of λT depends on the choice of D and can be computed from
the Möbius function of the join semilattice generated by {supp(x)}x∈D and
set union.
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The mixing time for compound edits is similar to before but depends on
the choice of D and sampling distribution w ∈ RD .

Theorem (Chung, SR, ’25)

Consider the random walk on ⟨D⟩ with sampling distribution w ∈ RD and
transition probability matrix P. Let

λ∗ = sup
X∈D
X ̸=E

λX

Consider the compound edit process (Gt)t≥0 obtained from D and w , and let
π denote its stationary distribution. Then for any initial state G0 = (V,E0)
and c > 0, we have

∥Pt(E0, ·)− π∥TV ≤ e−c

provided t ≥ m log 2+c
1−λ∗

.
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Future Directions
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The stationary states associated with compound edit processes can be
quite exotic.

A great follow up is as follows: Given a distribution µ on 2E , can we pick
a deck D and a sampling distribution w thereon such that π ≈ µ?

This would lead to the development of diffusion-based generative graph
models. Work is ongoing.
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But there are some hints of progress. In the test case where µ is the
uniform spanning tree distribution, we achieve the following:

On the left are samples from the stationary state associated to a deck D
on the edits of K5, w = Unif(D), with blue showing spanning trees.

On the right are samples from the stationary state associated to a deck
D , after roughly 300 steps of Wasserstein gradient descent-based training
on w .
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Questions?
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