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Graphs emerge from a variety of data science problems

Example 1: An illustration of the citation dataset Cora (nodes are CS
research papers, edges if one paper cites another). Nodes colored

according to their topic.
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Graphs emerge from a variety of data science problems

Example 2: A geometric graph with vector fields corresponding to
tropical storms shown. Nodes correspond to grid points in

latitude-longitude coordinates, edges based on proximity (not shown).
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Graphs emerge from a variety of data science problems

Example 3: An affinity graph drawn on the Sklearn Digits dataset. Each
node corresponds to one 8× 8 grayscale image of a handwritten digit,

and edges are based on Euclidean proximity.
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The setting of this talk is two worlds of graph-based methods in data
science...

Optimal transportation on graphs, which concerns families of
optimization problems on the probability simplex of the vertices of a
graph;

Graph-based semi-supervised learning, which concerns methods for
building data classification models in label-sparse regimes built upon
well-designed graphs.

The goal of this talk is to convince the listener of a surprising duality
between these worlds, and cover some new work and results along the
way.
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Our first topic is optimal transportation on graphs.

▶ G = (V ,E ,w) is a weighted, connected, undirected graph on n
vertices and m edges,

▶ P(V ) = {µ : V → R : µ ≥ 0, 1⊤µ = 1}, and
▶ d(i , j) weighted shortest path distance between i , j ∈ V .

Note: We identify functions f : V → R and vectors f ∈ Rn; moreover,
since our graph is finite, probability measures and density vectors can be
used interchangeably.
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Generically speaking, optimal transportation concerns a variety of
optimization problems which model how costly it is to move mass (given
by probability distributions) from one “location” µ to another ν in a
metric space.
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Suppose µ, ν ∈ P(V ). Then we define the set of µ, ν-couplings, denoted
Γ(µ, ν) by

Γ(µ, ν) =

π ∈ Rn×n : πij ≥ 0,
∑
i∈V

πij = µj ,
∑
j∈V

πij = νi

 .

ν

µ

π

Wasserstein distance is defined
as follows, for µ, ν ∈ P(V ) fixed:

Wp(µ, ν)
p = inf

π∈Γ(µ,ν)

∑
i,j

πijd(i , j)
p

 ,

1 ≤ p < ∞.
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For p = 1, W1 can be recast as a min cost flow problem:

W1(µ, ν) = inf

{∑
e

|J(e)|we : J : E → R,BJ = µ− ν

}

where B ∈ Rn×m is the oriented graph vertex-edge incidence matrix.

Biej =


1 if ej = (i , ·)
−1 if ej = (·, i)
0 otherwise.

BJ(i) = (outgoing mass at i)

− (incoming mass at i)

This is a well-known result and can be shown by, e.g., computing
Lagrangian duals repeatedly.
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W1 is known as the “Beckmann problem” on Graphs.

Has been used in computer graphics, notions of Ricci curvature on
graphs, weather pattern modeling, ...

Challenges: non-uniqueness of J (can be addressed via regularization);
expensive at scale

What if we focus on the minimum cost flow program to investigate new
ways of modeling transport on graphs?
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Enter effective resistance

between nodes i , j ∈ V :

rij = (δi − δj)
TL†(δi − δj)

where L† is the Moore-Penrose pseudoinverse of the graph Laplacian
L = D − A and δi , δj are Dirac masses.

rij = ∥L−†/2δi − L−†/2δj∥2

= inf

{∑
e

|J(e)|2we : J : E → R,BJ = δi − δj

}
(1)

= ...

Originated from electrical network models as the resistance in a network
between two unit sources.

Has deep connections to the simple random walk: rij =
1

vol(G)C (i , j)

where C (i , j) is commute time (expected time to go from i to j and
back).

Applications in graph sparsification, GNNs.
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Why not extend (1) to probability measures?

For µ, ν ∈ P(V ), we
introduce the p-Beckmann metric Bw ,p(µ, ν) via:

For 1 ≤ p < ∞, we set:

Bw ,p(µ, ν)
p = inf

{∑
e∈E

|J(e)|pwe : J : E → R,BJ = µ− ν

}

For p = ∞, we set

Bw ,∞(µ, ν) = inf

{
max
e∈E

|J(e)|we : J : E → R,BJ = µ− ν

}
Theorem R., Z. Wan, A. Cloninger (2024)

1. When p = 1: Bw−1,1(µ, ν) = W
d̃,1

(µ, ν) for d̃ shortest path distance

on (V ,E ,w−1)

2. When p = 2: Bw−1,2(µ, ν)
2 = (µ− ν)TL†(µ− ν)

Important to think of the weights as affinities in this setting
d̃ is a more natural distance than d
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Beckmann-2 distance, or measure effective resistance can be thought
of as a “quadratic” min cost flow problem for probability measures
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This notion seems to have some nice theory, for example, if we define the
graph Sobolev seminorm

∥f ∥2
Ḣ1(V )

=
∑

{i,j}∈E

wij |f (i)− f (j)|2

and its dual seminorm

∥f ∥Ḣ−1(V ) = sup
{
f ⊤g : ∥f ∥Ḣ1(V ) ≤ 1

}
,

then we can obtain a graph version of the Benamou-Brenier formula:

Theorem R., Z. Wan, A. Cloninger (2024)

B2(µ, ν)
2 = inf

{∫ 1

0
∥dµt∥2Ḣ−1(V )

dt : µt ∈ C1([0, 1]), µ0 = µ, µ1 = ν

}

There are also connections to random walks on the graph, but these
require some additional machinery to state.
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This setup leads to a natural pipeline for scalable graph-based
unsupervised learning.

Beckmann-2 Distance Wasserstein-2 Distance
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I buried the lede a few slides ago in stating this result:

Theorem SJR, Z. Wan, A. Cloninger (2024)

1. When p = 1: Bw−1,1(µ, ν) = W
d̃,1

(µ, ν) for d̃ shortest path distance

on (V ,E ,w−1)

2. When p = 2: Bw−1,2(µ, ν)
2 = (µ− ν)TL†(µ− ν)

What about p = ∞?
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Usually when someone mentions duality in an optimization context they
are referring to the Lagrangian dual problem:

▶ One forms a Lagrangian function with the objective and its
constraints by introducing multipliers; then,

▶ by minimizing this Lagrangian over the primal variables and
maximizing over the multipliers, one solves the dual problem.

Strong duality refers to the primal and dual problems achieving the
same optimal value.
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Gauge optimization refers to programs whose objectives are gauge
functions (nonnegative, positively homogeneous, and vanishing at 0⃗):

min
x∈C

κ(x), C ⊆ Rn closed, convex.

Gauge duality transforms a primal problem by replacing the objective
with its polar and the constraint set with its antipolar:{

miny∈C′ κ◦(y) κ◦(y) = inf{µ > 0 : ⟨x , y⟩ ≤ µκ(x) ∀ x ∈ Rn}
C′ = {y ∈ Rn : ⟨y , x⟩ ≥ 1 ∀ x ∈ C}.

Strong duality in this setting refers to a reciprocal relationship between
the optimal values of the primal and gauge dual programs.
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Consider the following program: For distributions µ, ν ∈ P(V ), consider
the program, for 1 ≤ p < ∞:

Cp(µ, ν) = min
φ∈Rn, φ⊤(µ−ν)=1

 ∑
{i,j}∈E

wij |φi − φj |p
1/p

,

and with the usual modification when p = ∞.

This defines the p-conductance between µ and ν.

“p-conductance” is used since...
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Cp(µ, ν) is gauge dual to the Beckmann formulation of optimal
transport:

Theorem R., C. Holtz, Z. Wan, G. Mishne, A. Cloninger (2025)

We have the primal-dual relationship:

1/Cp(µ, ν) =


B∞,w−1 (µ, ν) if p = 1,

Bq,w1−q (µ, ν) if p ∈ (1,∞) and 1/p + 1/q = 1,

B1,w−1 (µ, ν) if p = ∞.

Interpretation: p-conductance solves a dual norm problem to transporting
mass across the graph with minimum cost.

This extends a result of Alamgir and von Luxburg which considers the
case of vertices, i.e, Dirac measures.1

1Alamgir, V. Luxburg. Phase transition in the family of p-resistances, 2011.
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The program Cp(µ, ν) is more than just an artifact of a proof.

The case of p = 1 in particular can be connected to minimum cuts
between probability measures (and, in the case of Dirac measures, the
standard vertex mincut program).

On the applied side, Cp(µ, ν) led to a novel graph-based semi-supervised
learning method.
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In semi-supervised learning, we are tasked with building a classification
model from a large dataset of examples, of which only a small fraction
are labeled.

Graph-based methods seek to leverage the unlabeled examples by
building a graph on the dataset as a whole and utilizing the underlying
structure of the dataset to inform the classification model.

Training and unlabeled datapoints are identified as vertices in a graph,
and are connected with affinity-weighted edges when datapoints are close
in some metric.
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Laplace learning was the earliest such method: Assuming binary class
labels, let f : V → R denote a {−1, 1} indicator of the training node
labels on T ⊆ V , and the “extend f to the rest of the graph” via

f̃ ∈ argminφ

 ∑
{i,j}∈E

|φ(i)− φ(j)|2 : φ|T = f |T

 .

Class predictions: sign(f̃ ).2

The p-conductance program defines an SSL method as follows: Model
the training labels of one class using a measure µ, the other ν, and then
find:

f̃ ∈ argminφ

 ∑
{i,j}∈E

wij |φi − φj |p : φ⊤(µ− ν) = 1


Class predictions: sign(f̃ − f̃ ).

2Zhu, Ghahramani, Lafferty. Semi-Supervised Learning Using Gaussian Fields and
Harmonic Functions, 2003.
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The method appears performant in many settings, but there are still
many open questions on the theory side!

An illustration of a graph built on the Sklearn digits dataset. The red
edges highlight where |f̃ (i)− f̃ (j)| is large (p = 1), illustrating how the
predictions of the class of images of the digit six are formed.
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