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1 Introduction

The term computational graph theory was commonly used from the 1980s to the 1990s as an
umbrella term for such topics as the design and analysis of algorithms on graphs and computer-
assisted advances in combinatorial graph theory (see, for example, the book collection [39]). Since
then, the term has waned in popularity. Over the past few years, my body of work has aimed to
deliver a principled, fresh perspective on this topic by combining methods and problems from areas
such as graph-based algorithms in data science, statistical random graph theory, and geometric
graph theory. This research program is driven by my fascination with graphs as mathematical
objects that are simultaneously very simple (a graph is a collection of abstract points and some
distinguished pairwise relationships between them) and yet deeply expressive in their ability to
capture the structure of complex systems.

Generally speaking, my work has centered on three main research directions, each of which
I describe in greater detail in the sections that follow. During my Ph.D., I am grateful to have
been supported and mentored by my advisors Fan Chung and Alex Cloninger, who have provided
complementary perspectives stemming, respectively, from combinatorics and spectral graph theory
to signal processing and machine learning. As I look to the next phase of my career, I envision this
program continuing to evolve and expand in exciting new directions.

Random graph theory (Section 2)

I am interested in random graphs primarily for two reasons: first, for their role in analyzing and
benchmarking the performance of graph-based algorithms emerging from data science applications;
and second, for their connections to stochastic processes, specifically Markov chains and algebraic
combinatorics. In [27], I established operator norm concentration inequalities for adjacency and
Laplacian matrices of inhomogeneous Erdés—Rényi-type signed graphs, providing insights into com-
munity detection in signed stochastic block models. In [22] (with D. Kohli, A. Cloninger, and G.
Mishne), we also advanced this theme by analyzing the concentration of noisy graph kernel Lapla-
cians to their clean counterparts, providing theoretical foundations for robust manifold learning.

Stochastically evolving graphs, the second component of my body of work in random graph
theory, appear frequently in computer science as a means to develop sampling algorithms, dynamic
network models, and randomized optimization methods. In [9] (with F. Chung), we introduced a
model for dynamically evolving graphs based on random edits, deriving closed-form formulas for
transition probabilities and mixing times using semigroup spectral theory. In doing so, we applied
analysis techniques borrowed from algebraic combinatorics which had yet to be applied to random
graph theory and opened the door to a variety of new analysis techniques for Markov chains on
combinatorial state spaces.
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Graph-based methods in data science (Section 3)

Graphs are ubiquitous in data science, serving as models for social networks, biological systems,
transportation networks, and many other complex phenomena. Generically speaking, I am inter-
ested in optimization problems defined on the probability simplex of a graph: how to meaningfully
construct such programs, how to solve them efficiently at scale, and how to leverage their solutions
for downstream data science tasks. In [32] (with A. Cloninger and Z. Wan), we studied p-norm
minimum cost flow problems on the probability simplex of a graph and connected these to optimal
transport theory, in the process developing scalable algorithms and applying them to downstream
clustering tasks. This led to a sequel [29] (with C. Holtz, Z. Wan, G. Mishne, and A. Cloninger),
in which we used these problems to develop and analyze a robust graph-based semi-supervised
learning method that balances edge sparsification with class separation, achieving state-of-the-art
performance in low-label and corrupted-label regimes. These two efforts have highlighted rich and
unexpected connections between optimal transport, effective resistance, and graph cuts, and the
implications of these findings are still being explored.

Last but certainly not least, in [22] (with D. Kohli, A. Cloninger, and G. Mishne), we developed
a spectral method for robust tangent space estimation on noisy data manifolds by orthogonalizing
gradients of low-frequency graph Laplacian eigenvectors and provided theoretical guarantees and
empirical evidence for improvements over local PCA.

Geometric graph theory (Section 4)

I am interested in geometric graph theory from at least two different angles. First, over the past
three years or so I have become interested in various notions of curvature on graphs; particularly
from the perspective of understanding the connections between the combinatorial properties of
graphs and their curvature notions. Second, I am interested in foundational theory for the graph
connection Laplacian, which is a matrix-valued operator that extends the classical graph Laplacian
by incorporating geometric data in the form of parallel transport operators on edges.

In [11] (with A. Cloninger, G. Mishne, A. Oslandsbotn, Z. Wan, and Y. Wang), we formulated
matrix-valued Dirichlet problems on connection graphs, defining connection voltage functions and
conductance matrices that extend classical notions to the connection setting. In [30] (with D.
Kohli, G. Mishne, and A. Cloninger), we generalized discrete optimal transport to vector fields on
connection graphs and established duality results for these programs.

In [12] (with J. A. De Loera, J. Eddy, and J. A. Samper), we studied discrete curvature notions
on convex polytopes, proving finiteness and abundance theorems for two different notions of discrete
curvature. In [28], I derived explicit formulas for Wasserstein distances and curvature measures
on trees, providing insights into their geometric properties. Finally, in [31] (with F. Southerland
and E. Surya), we investigated a special class of graphs arising from a notion of curvature of
Steinerberger [38] and generalized a number of known theorems in this field.

2 Statistical random graph theory and stochastically evolving graphs

Random graphs serve as fundamental models for networks that appear in a variety of domains.
These arise both from the need for principled simulations of real-world phenomena and data and
for benchmarking the performance and behavior of graph-based algorithms. My work in this area
primarily focuses on concentration inequalities for random graph matrices (see Section 2.1) and
spectral /mixing time analyses for stochastically evolving graphs (see Section 2.2).
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Figure 1: This figure contains three examples of state graphs, which are used to model the state spaces of stochas-
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tically evolving graph processes. The nodes correspond to labeled subgraphs of a host graph H, and the links appear
whenever it is possible to transition between the subgraphs according to the process under consideration. From left
to right: host graph ‘H = C5 according to a simple edit process of adding/deleting edges at random (a hypercube);
host graph H = C5 corresponding to the Moran forest process of adding/deleting groups of edges in tandem; host

graph given by the HouseX graph, with respect to the Glauber dynamics process on its spanning trees.
2.1 Concentration inequalities for matrix-valued statistics of random graphs

One of the oldest methods in graph-based data analysis is spectral clustering, which can be described
at a high level as follows [34]. Given a weighted graph G = (V, E, w) with n vertices, we define the
graph cut between two disjoint subsets S,T C V as

Cut(S, T) = Z Wij-
i€S
JeET

The normalized cut (Ncut) between S and its complement S¢ is defined as

o c 1 1
Ncut(S, S¢) = cut(S, S9) (VO](S) + Vol(SC)) ,

where vol(S) = > ,cq >_jev wij is the volume of the set S. The goal of spectral clustering is to
find a partition of the graph that minimizes the Ncut value. Via a semidefinite relaxation, this
problem can be viewed in terms of the graph Laplacian matrix L = D — W, where W is the
weighted adjacency matrix of G and D is the diagonal degree matrix with entries D;; = >, Wi;.
In turn, the leading eigenvector of L provides an approximate solution to the Ncut problem. We
note that the variational characterizations of eigenvalues and eigenvectors of L are closely tied
to connectivity properties and isoperimetric inequalities on graphs, such as Cheeger’s inequality
(see [10, 16]). There are also variants of spectral clustering for signed graphs, which instead seek to
identify so-called balanced communities by targeting objectives that combine sparse edge removal
and well-behaved signatures on the resulting components.

Certain random graph models are designed to simulate the environment of clustering or other
downstream data analysis tasks, and it is of interest to certify that spectral clustering techniques
can recover the ground truth information with high probability. These include stochastic block
models and so-called information-plus-noise models, which consider randomly weighted geometric
graphs. There is a rich history on this topic in the statistics literature (see, for starters, [8, 13, 23]).

As a variant, one may consider inhomogeneous Erdds—Rényi-type signed graphs, which are ran-
dom graphs where each pair of vertices is assigned an edge and a positive or negative sign according
to some probability distribution. These models are useful for studying networks with both pos-
itive and negative relationships, such as social networks with friendships and rivalries. In [27], I



established operator norm concentration inequalities for adjacency and Laplacian matrices of inho-
mogeneous Erdés—Rényi-type signed graphs, providing insights into community detection in signed
stochastic block models.

In [22], detailed in greater length in Section 3.2, we also advanced this theme by analyzing the
concentration of noisy graph kernel Laplacians to their clean counterparts, providing theoretical
foundations for robust manifold learning. In particular, we adopted an information-plus-noise
model consisting of a dataset {X;}I' | given by X; = y; + Z;, where {y;}I'; are “clean” points on
the manifold and {Z;}}_, are independent sub-Gaussian noise vectors. We proved that under certain
conditions on the noise distribution and the kernel used to construct the corresponding Laplacian
matrix, the noisy graph Laplacian Lyqisy concentrates to the clean graph Laplacian Lcjean With high
probability as n — oo, and hence by Weyl’s inequality and the Davis-Kahan theorem, so do the
corresponding eigenvalues and eigenvectors. This result was instrumental in establishing theoretical
guarantees for the robustness of our tangent space estimation method.

Theorem 2.1 (Informal statement of eigenvector stability [22]). Let {y;}7, be fived with y; € RY
and write

Xi =yi+ Zi,

where {Z;}7, are i.i.d. mean-zero sub-Gaussian noise vectors with variance prozy & > 0. Assume
that & = o(1) and d is fized as n — 00. Let Lejean and Lygisy be the normalized kernel graph
Laplacians constructed from {y;}'_, and {X;}_,, respectively. Then, under certain assumptions
on the eigenvalues of Lejeqn, the leading O(1) eigenvectors of Lyeisy converge to those of Ljeqn with
high probability as n — oo.

2.2 New directions in stochastically evolving graphs

Stochastically evolving graphs are created when the structure of a graph changes over time according
to some stochastic process. In theoretical computer science, these models appear frequently in
the form of sampling algorithms for structures such as matchings [15], spanning trees [1, 5], and
colorings [7]. In applied settings, these models are useful for studying dynamic networks, such as
social networks [20], communication networks [19], and biological networks [26].

Often a key objective in the analysis of these models is the mizing time of the underlying
Markov chain, which measures how quickly the graph converges to its stationary distribution.
Understanding mixing times is crucial for designing efficient algorithms and for characterizing the
long-term behavior of dynamic networks. Classical estimates relate the mixing time of an ergodic,
reversible Markov chain P to its largest nontrivial eigenvalue, thereby motivating the investigation
of the spectral decomposition of Markov kernels as a means to certify their mixing times. In many
cases, however, the state space of the Markov chain is combinatorial in nature, making direct
spectral analysis challenging.

In [9], we introduced a model for dynamically evolving graphs based on random edits and
derived closed-form formulas for transition probabilities and mixing times using semigroup spectral
theory. Specifically, we considered a random walk on the lattice of subgraphs of a fixed graph
G where at each step a randomly chosen “edit” (adding/removing one edge, or compound edits
affecting many edges) is applied. By showing that the edits form a left regular band semigroup,
we derived closed-form formulas for the eigenvalues of the associated transition probability matrix
and sharp mixing time estimates. The framework extends to compound edits such as the Moran
forest model (see [4]) and random intersection graph processes, with mixing governed by the largest
nontrivial eigenvalue. Below I provide an informal statement of one of our main results.



Theorem 2.2 (Informal statement, eigenvalues of compound edit processes [9]). Let G = (V, E)
denote a fived host graph and let A be a given set of edits (defined as idempotent maps on 2F). Let
w € RA be a given probability distribution on A. Consider the random walk obtained as follows:
start with a labeled subgraph Go of G, and at each time t > 1, sample an edit x ~ w and write
Gi = xGi_1. Denote the transition probability matrix of this process by P. Then P is diagonalizable
and its eigenvalues are related to a certain join semilattice associated to G and A, and can be
computed in closed form.

2.3 Future directions

- The framework developed in [9] suggests that a variety of related stochastic processes on
graphs rapidly mix. Can we leverage these insights to design new sampling algorithms for
combinatorial structures or diffusion-based generative graph models?

- If G is a fixed graph and we retain each edge with probability p (or k£ = O(1) neighbors of each
vertex), how low can p (or k) be while still ensuring that the low-frequency eigenvectors of
the percolated graph approximate those of G with high probability as the number of vertices
grows? These are related to randomized near neighbor graphs (see [21]).

3 Graph-based methods in data science

Graphs have been used to develop algorithms and models for a variety of data science tasks, includ-
ing clustering, classification, and dimensionality reduction. My work in this area primarily focuses
on optimal transport and graph-based semi-supervised learning (see Section 3.1), and geometric
data analysis (see Section 3.2).

3.1 Optimal transport and graph-based SSL

Optimal transport (OT) has emerged as a powerful tool for comparing and analyzing probability
distributions, with applications in machine learning, computer vision, and economics. In the graph
setting, one can define OT problems on the probability simplex P (V') of the graph, which consists
of all probability measures supported on the vertices V. Specifically, if u,v € P(V), then the
1-Wasserstein distance Wi (u,v) is given by

Wi(p,v) = 1nf Z da(i, j)m(i,7), (1)

where II(u, v) is the set of couplings between p and v, and dg(i,7) is the shortest path distance
between vertices ¢ and j. In the graph setting, the program Eq. (1) is equivalent to the following
minimum-cost flow problem (also known as the Beckmann problem):

Wi(p,v) = mln {Zweu cdiv(J) = u—y}. (2)

Here, J is a flow on the edges of the graph, w, denotes the edge weights, and div(.J) is the divergence
of the flow at each vertex defined by the action of the vertex-edge oriented incidence matrix. In [32],
we explored connections between Wj(u,v) and extensions of Eq. (2) to include p-norm costs on
flows, which we termed p-Beckmann problems. Specifically, if p € [1,00), we defined

By(p,v) = mln {Zweu )P div(J) = M—V}.



For p = oo, we set

B = mi J cdiv(J)=p—v,.

oo(p,v) = min {gleaEXI (e)] : div(J) = p V}

We developed duality theory for these problems and demonstrated their utility in various clustering

tasks. Moreover, we showed that the 2-Beckmann distance generalizes effective resistance on graphs

to the probability simplex and linked it to random walks and homogeneous Sobolev seminorms.
The p-Beckmann problems also

served as the basis for a graph- '.";':-"..'lg*.'f?'l"o,.‘,i‘ﬂr?"f"“’
based semi-supervised learning (SSL) E I b

method in [29]. SSL, generally speak- i ;
ing, aims to leverage both labeled and 4::,‘ . ¥ o] "'"/ p
unlabeled data to improve model per- > s ,
for@ance. In graph-based SSL, one r B “,’E-.;_’ = :v&'fg::’a’:"! .
typically has a small set of labeled
vertices L. C V with known labels
{yi}ier and a larger set of unlabeled
vertices U = V'\ L. The goal is to infer
labels for the unlabeled vertices based
on the graph structure and the la-
beled data. There is a rich history of
methods developed along these lines
(see, e.g., [6, 40] for a small selection
of starting points). In [29], we pro-
posed a p-conductance learning method that balances edge sparsification with class separation
(see Fig. 2 for an illustration). Specifically, we considered the following p-conductance program
between measures p,v € P(V):

Cp(p,v) = min Y. welo(z) — oy

e={z,y}eF

Figure 2: This figure contains a graph with vertices corresponding to
the entries of a small digits dataset [2]. Edges are included whenever
two images are similar. We seek to classify images of the digit 6 from
images of all other digits. The reference measure p is uniform on
the sixes with their images overlaid in the figure, and the reference
measure v is uniform on those vertices with images overlaid as well. We

highlight in red edges that are cut according to the program C1(u,v).

By leveraging gauge duality (see [18]), we established a relationship between C)(p, v) and By(p,v),
connecting potentials used in our SSL method to the p-Beckmann problems (see Theorem 3.1).

Theorem 3.1 (Equivalences between Beckmann and Conductance programs [29]). Let pu,v € P(V)
be distinct. Then the optimal values of C, and B, are related as:

1/Boo,w_1(:u7 V) ifp: 1,
Cp(p,v) = 4 1/Byai-a(psv)  if p € (1,00) and 1/p+1/qg =1,
1Byt (iv)  ifp=o.

In particular, if G = (V, E) has unit weights, then Coo(pt,v) = 1/Wi(u,v) and
Co(u,v)? = 1/Ba(u,v)* = 1/ (=) "L (n - v),

where LY is the Moore-Penrose inverse of L.



3.2 Geometric data analysis

In many data science applications, one encounters data that lies on or near a low-dimensional
manifold embedded in a high-dimensional ambient space. Capturing the geometric structure of
such data is crucial for effective analysis and learning. One of the specific subtasks in this area is
tangent space estimation, which involves estimating the tangent spaces of the manifold at various
points based on the graph structure.

Consider a method such as local PCA [36], which is designed to estimate tangent spaces as
follows. Given a collection of data points {z;}? ; in R? that lie on or near a k-dimensional manifold
M, one constructs a graph G = (V, E,w) as before. For each vertex i € V, one identifies its local
neighborhood N (i) (e.g., the k-nearest neighbors) and performs PCA on the points {x; : j € N (i)}
to estimate the tangent space T;, M after first estimating the intrinsic dimension & of the manifold
beforehand. While local PCA is straightforward and widely used, it can be sensitive to noise and
perturbations in the data, leading to inaccurate tangent space estimates.

Our work on this topic begins by utilizing kernel Laplacians, which are discrete approximations
of the Laplace-Beltrami operator on the manifold constructed from the graph. Specifically, one
defines the graph Laplacian L as

L=D-W, (3)

where W is the weighted adjacency matrix of the graph and D is the diagonal degree matrix with
entries Dj; = >°; Wi;. The normalized graph Laplacian is given by

Lyorm = I — D™Y2W D12,

When the kernel used to construct the weights W is chosen appropriately (e.g., the random walk
kernel), the graph Laplacian converges to the Laplace-Beltrami operator on the manifold as the
number of data points increases and the neighborhood size decreases (see, e.g., [3]).

Eigenvectors of the kernel Laplacian capture important geometric information about the mani-
fold, and their gradients can be used to estimate tangent spaces. Moreover, we observe empirically
that these low-frequency eigenvectors are more robust to noise than the eigenvectors appearing
deeper in the spectrum. This observation motivates our approach in [22], where we developed
a spectral method for robust tangent space estimation on noisy manifolds. Our method, termed
LEGO, proceeds by orthogonalizing the gradients of the low-frequency eigenvectors of the graph
Laplacian to estimate the tangent spaces at each vertex. Specifically, for each vertex i € V, we
compute the gradients V¢;(z;) of the first m eigenvectors {¢; };”:1 of the graph Laplacian and then
apply a localized orthogonalization procedure to obtain an estimate of the tangent space T, M.
We provided two theoretical arguments to support our empirical observations: (7) a differential
geometric analysis on tubular neighborhoods showing that eigenfunctions with large gradients in
noise directions lie deeper in the spectrum; (77) a random matrix analysis proving the noisy graph
Laplacian concentrates to the clean operator w.h.p. in certain noise regimes, so low-frequency
eigenvectors (and their gradients) are noise stable (see Theorem 2.1).

3.3 Future directions

- In ongoing work (with C. Holtz and M. Black), I am investigating the relationship between
existing notions of edge centrality metrics such as the betweenness centrality and biharmonic
distance. We aim to establish equivalences such as the ones outlined in Theorem 3.1.

- We are also currently working on formalizing guarantees for the observed robustness of the
graph cut-based SSL method proposed in [29].



4 Geometric graph theory: connections and curvatures

Graphs can be equipped, both intrinsically and STEP:0 STER STEP: 2 STER:3
extrinsically, with geometric features that cap- A A it
ture various properties of the underlying graph G

or data. My work in this area primarily focuses
on connection Laplacians (see Section 4.1) and
discrete curvature notions (see Section 4.2).

4.1 Connection Laplacians

One way to incorporate extrinsic geometric in-
formation into graph-based methods is through
the usage of connection Laplacians, which are
Laplacians that encode parallel transport op-
erators between vector spaces at each vertex.
Specifically, a connection graph is a tuple (G, o)
where G = (V, E,w) is a weighted graph and
o: E — O(d) is a connection assigning an or-
thogonal transformation to each edge. The con-
nection Laplacian L, is defined as

(Lo f)(@) = D wii(f(i) —0if(5)),

jijteE

STEP: 12 STEP: 13 STEP: 14 STEP: 15

for f : V — R? Connection Laplacians
have been used in various applications, includ- Figure 3: By defining a notion of minimum cost parallel

ing computer vision [35]7 manifold learning [36], transport between vector fields on a geometric graph [30],
. we introduced an algorithm for vector field interpolation on
and shape analysis [33].

. . graphs. Here, we illustrate such an interpolation between
In [11], we formulated various matrix-valued e ior fields defined on the Stanford bunny [37].

Dirichlet problems on connection graphs and
used their solutions to define connection voltage functions and conductance matrices that extend
classical notions to the connection setting. We showed that these matrices encode the effective
conductance between nodes while also reflecting the connection structure, and we established in-
variance properties under switching equivalence and direct sums of connections. We also extended
the notion of effective resistance to connection graphs by defining the connection resistance ma-
triz R, based on the solution of a similar Poisson-type equation. We proved that R, is, up to a
structured congruence, the pseudoinverse of the conductance matrix.

In [30], we generalized discrete optimal transport to vector fields on connection graphs by
defining the connection Beckmann problem as follows:

J:E—Rd

Wi (o, f) = min {Z wel|J(e)|| : dive(J) = a — 6} ,
ecE

where div, is the connection divergence operator that incorporates the connection ¢. This problem
models the optimal parallel transport cost between vector fields a, 5 : V' — R? on a data manifold.
We established feasibility criteria and duality results for the connection Beckmann problem, as
well as a relaxed and regularized variant thereof. We demonstrated that our work can be applied
to various data science tasks with a geometric component, such as color image processing and
directional data analysis (see Fig. 3).



4.2 Discrete curvatures

Curvature is a fundamental concept in differential geometry that quantifies how a geometric object
deviates from being flat. In recent years, there has been rapidly growing interest in developing dis-
crete notions of curvature for graphs and networks, which can provide insights into their structural
properties. Various discrete curvature notions have been proposed, including Ollivier-Ricci curva-
ture [25], Lin—Lu—Yau curvature [24], Forman-Ricci curvature [17], and more recently, Steinerberger
curvature [38] and effective resistance curvature [14].

In [12], we studied discrete curvature notions (specifically, resistance curvature and Forman-—
Ricci curvature) on convex polytopes, proving finiteness and abundance theorems in various dimen-
sions. This marked the first systematic study of discrete curvature notions on polytopes, revealing
new connections between combinatorial geometry and discrete curvature. In [28], I derived ex-
plicit formulas for Wasserstein distances and curvatures on trees, and obtained comparison results
between different curvature notions. This marked one of only a handful of papers which obtain
explicit quantitative comparisons between multiple notions of discrete curvature in one setting.

Finally, in [31] (in preparation, with F. Southerland and E. Surya), we investigated a special
class of graphs arising from a notion of curvature of Steinerberger [38]. Specifically, we studied
distance exceptional graphs, which are graphs where the equation Dz = 1 does not have a solution.
Here, D is the distance matrix of the graph and 1 is the all-ones vector. These graphs appear
naturally within the curvature framework of Steinerberger, but are mysterious in many respects.
Prior to our work, constructions of these graphs were extremely constrained and poorly understood.
We introduced a graph invariant called the curvature index, which measures the extent to which
a graph deviates from being distance exceptional (and, in particular, vanishes when G is distance
exceptional). In doing so, we generalized a number of known theorems in this field and proved an
embedding theorem, stated below.

Theorem 4.1 (Informal statement of distance exceptional embeddings [31]). Let G be any graph,
connected or otherwise. Then there exists a distance exceptional graph G’ such that G is isomorphic
to an induced subgraph of G'. Moreover, if G satisfies «(G) < 0o, where (G) is the curvature index
of G (definition omitted), then the embedding can be chosen to be an isometry.

4.3 Future directions

- State graphs (see Fig. 1) provide a rich class of large graphs related to stochastically evolving
graph processes (see Section 2.2). Can we characterize their discrete curvature properties and
relate them to mixing times of the underlying processes?

- In the Erd6és—Rényi random graph G(n,p), can we understand the behavior of the curvature
index as n — oo? What fraction of graphs are distance exceptional?
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