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This result is super well known, so I am just reproducing a proof here as a standalone reference
for myself or others. See (Il), for example. I think a version also appears in a book by Diaconis.

Theorem 1. Let (X¢)i>0 be an ergodic and reversible Markov chain on a finite state space X with
transition probability matriz P. Let

I1=M>X>X3>...2 )\, > -1

denote the eigenvalues of P, and let w denote the (unique) stationary state of P. For each t > 0 and
xg € X, the total variation distance between the distribution of the process at time t after starting at
xo and the stationary state satisfies
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where Tyin = Mingey m(x) and A, = max{|Az|, |An|}.

Proof of [Theorem 1. Let II denote the diagonal matrix with entries given by 7. Since P is reversible,
we have that the matrix Q = II/2PII~/2 is symmetric, and therefore orthogonally diagonalizable,
and moreover has the same eigenvalues as P since the vector 7 is positive in each entry. We therefore
have that
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where 0, is the corresponding Dirac measure (expressed as a row vector) for zg € X. Now we can
think of the diagonal matrix IT'/? as an operator from (R¥, || - [2) — (R¥,]| - ||1), and note that the
norm of a diagonal operator acting between these spaces will be the f5-norm of its entries, which in
this case is one. Thus we have
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where we express @ = VAVT for an orthogonal matrix V and a diagonal matrix A consisting of the
eigenvalues of @, which coincide with those of P. Note that we may choose v; = w!/2. Then by



orthogonal invariance of the 2-norm and some linear algebra we have
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from which the claim follows. O
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