Theoretical Foundations

of Data Science
Notes for DSC40A

Sawyer Jack Robertson

L
=

=
7

Preface

This book contains notes for DSC40A taught at UC San Diego during Summer Session
2025. Please keep in mind that this will(!) contain typos and errors throughout. If you
tind any you are welcome to let me know at sSrobert (at) ucsd (dot) edu.

The version you are reading was compiled on October 7, 2025.

Table of Contents

Chapter 1.
1.1.
1.2.
1.3.
1.4.
Chapter 2.
2.1.
2.2,
2.3.
2.4.
2.5.
Chapter 3.
3.1.
3.2.
3.3.

3.4.

Foundational Concepts

The modeling method

The constant model and loss functions

Vector-valued features and targets

Exercises

The Linear Model

Simple Linear Regression: Scalar Features, Scalar Targets
Warmup: The constant model revisited

Multiple Linear Regression: Vector Features, Scalar Targets
The General Linear Model: Vector Features, Vector Targets
Exercises

More on Modeling

Polynomial Regression and Interactions

Convexity & Gradient Descent

Regularization: Ridge and Lasso Regression

Bonus: Constrained optimization

11

17

23

33

33

40

43

52

56

68

68

75

84

91

3.5. Exercises 95

Chapter 4. Modeling with Probability 104
4.1. Sample Spaces and Probability Measures 104
4.2. Counting and Combinatorics 107
4.3. Independence and Conditional Probability 112
4.4. Naive Bayes Classifiers 118
4.5. Exercises 123
Chapter 5. Appendices 132
A. Calculus Background 132
B. Linear Algebra Background 133
Chapter 6. Index 135

? Describe a scenario
where the input vari-
ables consist of multi-
ple different types.

1 Foundational Concepts

Far better an approximate answer to the right question, which is often vague, than an
exact answer to the wrong question...

- John W. Tukey

This chapter will cover several foundational concepts and themes which will perme-
ate the rest of our journey. We will begin by covering the “modeling method,” which is
intended to serve as a guiding beacon for the way data scientists approach their work.
Much in the same way that a biologist might utilize the scientific method to understand
the root cause of some particular disease, a data scientist utilizes the method contained
herein to build a neural network to determine whether a plant leaf is diseased or healthy.

Then, we will spend some time focusing on the constant model, which is probably
the simplest model and this will give us an opportunity to explore different choices of
loss functions as well.

1.1 The modeling method

Every scenario we encounter as data scientists consists of a few fundamental ingre-
dients. Consider the following example: Annabeth is a biologist working at a company
that studies infectious diseases in mice. She wants to understand how the mice respond
to different drug dosages. She measures the dosages in units of milligram per gram of body
weight, and she measures the mouse’s response in terms of hours survived after infection.
In this example, Annabeth would like to build a model that, given a specific dosage,
predicts the number of hours a mouse will survive after infection.

The dosages are what we call input variables, also known as features, and are the
data or attributes which are used to make predictions. They represent the independent
variables in the context of a mathematical model or statistical analysis. On the other
hand, output variables, also known as targets, are the data or attributes that the model
aims to predict. They represent the dependent variables in the context of a mathematical
model. In this example, mouse survival time is considered the output variable.

Input and output variables come in all shapes and sizes. Numerical variables consist
of numbers (or vectors of numbers), and include such things as the dosages we saw
earlier; other examples include things like the height of a person, the weight of an acorn,
or the brightness of a pixel on a screen. Categorical variables correspond to discrete
units which originate from a fixed list; these include examples like the color or breed
of a cat, the genre of a movie, or the major of a college student. Binary variables are
a subclass of categorical variables, and correspond to situations where the variable can
take on one of two possibilities, e.g., true/false, diseased/healthy, success/failure. By
identifying the input and output variables, we have completed step one of the modeling
method.

A model is a mathematical function that maps features to targets based on a set of
parameters, aiming to capture the underlying relationship between them. Parameters,

5

? What are some
examples of different
models Annabeth could
use?

? Why do we use d
instead of 0 here?

also known as weights, are the numerical values which are used to define the model
itself; these are distinct from the input variables, but may depend on them. One can
think of the weights of a model as the dials and knobs that are adjusted in response to
the input data in order to get an accurate response. Model training is, quite simply, the
process of tuning the weights of a model in order to improve the accuracy of the model
overall.

Returning to our example, Annabeth decides to use a model to understand the re-
lationship between mouse survival and drug dosages. She decides to use the following
approach: letting x denote the drug dosage in units of milligram per gram of body
weight, she wishes to model the survival time of a mouse by f(c; x), where

flex) =cx,

for some c € R. This is an example of a linear model, about which we will learn more
in the next chapter. The model consists of a single parameter: c. By selecting a model,
we have completed step two of the modeling method.

But we have a dilemma: How should Annabeth select ¢ in order to produce an ac-
curate prediction of mouse survival time? She will need to use a loss function. A loss
function is a function which is used in machine learning to quantify the difference be-
tween a model’s predicted output and the actual target values. By assigning a numerical
value to prediction errors (sometimes called “costs”), it guides the selection of weights
to improve the model’s performance. Examples include: mean-squared error (MSE),
absolute loss, cross-entropy loss, and more.

To keep things as simple as possible for now, Annabeth chooses to use the square
loss, which is set up as follows. Let ¢ denote a particular choice of the model parameter,
let x denote the drug dosage, and let y denote its actual survival time. We write

L(c; (x,)) = (y — ex)*.

In this notation, we write L(c; (x,y)) to mean “the loss associated with a choice of the
parameter when the observation (x,y) is given.” The semicolon serves to separate the
parameter from the input-output pair being used when evaluating the error of the pre-
diction, which in this case is cx. Notice that when y =~ cx, i.e., the predicted survival time
is close to c(dosage), then the loss will be small; otherwise, it will grow quadratically
in terms of the difference. The choice of a loss function depends on the nature of the
problem (e.g., regression vs. classification) and the desired behavior of the model, such
as robustness to outliers or interpretability of the optimization process. By choosing a
loss function, we have completed step three of the modeling method.

If Annabeth has a single mouse in her study, with observed input-output variables
(x1,y1), then finding ¢ which minimizes L(c; (x,y)) can be done with some calculus, as
follows. We begin by differentiating L(c; (x1,y1)) with respect to c:

dL d 2
W —ex)

a —
d
— 20— ex1) - (11— ex)
=2(y1 —cx1) - (—x1).
Simplifying, we have:
dL
3% = —2x1(y1 —cxq).

@ Try to replicate
this calculation for a
different choice of L!

To find the value of c that minimizes the loss, we search for a critical point where % = 0.

Once we do this, we are solving an equation for a particular value of ¢ - let’s denote it c*,
and solve

—2x1(y1 — ¢*x1) = 0.

Since x1 # 0 (we assume the dosage is nonzero), we can divide through by —2x;, and
yield:

y1 —c*xp =0.
Rearranging gives:

x _ N
X1

Next, we note that

2
3—; = %(—le (y1—cx1)) =2x] >0
Since the second derivative of L is always positive, by the second derivative test (see
Appendix A), we may conclude that the value c* which minimizes the loss for this
single mouse is the ratio of the actual survival time y; to the dosage of the mouse x;.

But what if Annabeth’s experiment consists of, say, ten mice instead of a single one?
Our choice of ¢ needs to be informed by all of the data at hand in order to be as accurate
as possible. The dataset of features used to inform the choice of parameters in a model
is sometimes called the training data, and is distinguished from testing data, which is
the dataset of examples that a data scientist will usually set aside during the training
process in order to evaluate the performance of the model. In this example, the training
data might consist of ten dosages x1,xy, ..., x19, each with their corresponding survival
times v1,Y2,...,Y10-

In order to use all of the training data, we use our loss function to build what is
called a risk function. A risk function is any function used to estimate the loss incurred
by a model over an entire dataset. In the same manner that there are many choices for
different loss functions, there are also many choices for risk functions. In this section we
focus exclusively on the empirical risk function, which is just the average over all of the
losses in the training set. In Annabeth’s setting, we write

1 10
R (0}) = g5 L Lo (5,0)
1

=1 ((yl — cxl)2 + (2 — cx2)2 + ...+ (y10 — cx10)2>)

We use the notation R(c; {(x;,y;)}1%,) to mean “the risk associated with the parameter
choice c and the input and output pairs given by

{(x1,11), (x2,92), -, (%10, ¥10) "

As long as we understand that {(x;, y;)}12, are the training data, we may write R(c) for
short. In this context, finding the “best” parameter ¢ for modeling the entire dataset
can be recast as finding ¢ which minimizes R(c). We can approach this via a similar

7

@ What changes if
there are n mice in-
stead of 10?

derivation as before, as follows. We first compute the derivative of R(c) with respect to
c:

dR 1 & d 2
dc ~ 10 & qe i)
1=
1 d
:Egz(}/i—cxi)'g(%—cxi)
1 10

Simplifying, we have:

Factoring out the summation:

dR 2

— == xyi—cy xt .
dc 0\&™" e

We set fli—lj = 0 to find the critical point. Once again, this is now an equation for c, so we
use the notation c* to emphasize that we are searching for a special value. Although this
expression might look unfriendly, keep in mind- we are solving for ¢*, which appears
as a single term in the middle:

2 10 10 5
0=—75 Y xiyi—ct Y x|
i=1

i=1
10 10)
*
— 0= inyi—c in.
i=1 i=1

10 ..,
— c* = Li—1 XiYi Xili (1)

Yl 7
We leave it as an exercise to verify that ‘32712{ > 0 for our dataset. Thus, the value c*
that minimizes the empirical risk is given by the ratio of the sum of the products of x;
and y; to the sum of the squares of x;. We can bring this example to life in Fig. 1 by
using Annabeth’s fictional dataset. Having found c*, we have completed step four of the
modeling method, and are finally ready to state it in full, which we include below.

@ The Modeling Method
1. Identify your input and output variables.

2. Choose a model.
3. Choose a loss function and a risk function.

4. Find a minimizer of the risk function.

25

xi | i 20

437 [10.46

9.56 | 24.43

7.59 | 18.51 15

6.39 | 15.50

240 | 6.25 =

240 | 4.10 10

1.52 | 2.08

8.80 | 21.43

6.41 | 15.01 5

7.37 | 18.75

c* ~ 245 0

0 2 4 6 8 10
X

Figure 1: (left) Annabeth’s dataset for ten mice. The dosages x; are measured in units of
mg per g of body weight, and the survival times y; are measured in hours post infection.
The choice of ¢ which minimizes the empirical risk is approximately 2.45. (right) A
scatterplot of the training data {(x;,y;)}1°; situated in the same axes as the function
f(x) = c¢*x, which corresponds to the predicted survival times for the dosages.

) Example 1.1.1 The riper the fruit

Marcus is a farmer who grows mangoes. He wants to predict how ripe a fruit will
be based on the number of days since it was harvested. He measures ripeness on
a numeric scale between 0 (unripe) and 10 (perfectly ripe). Marcus believes that
the ripeness y of a fruit depends logarithmically on the number of days x since
harvest. He chooses a model where ripeness is given by:

f(c; x) =clnx,

where ¢ € R is a parameter that Marcus will determine based on his data.
Marcus collects data for ten fruits. The number of days since harvest (x;) and the
observed ripeness (y;) are shown in the table below.

x; (days) | y; (ripeness)

1.2 1.5
2.5 2.8
3.1 3.2
4.8 4.0
5.6 4.5
6.0 4.8
7.2 5.5
8.1 6.0
9.0 6.3
10.5 6.9

To determine the optimal value of ¢, Marcus chooses the square loss:

2
L(c;(x,y)) = (y—clnx)".
Using the square loss, the empirical risk function for Marcus’s data is:
1Y 2
R(c) ==Y (yi—clnx;)".
105

We compute the derivative of R(c) with respect to c, as follows:

dR 2 W
E = —E Zlnxi(yi —clnxi).
i=1

Setting %—ls = 0, we solve for c*:

10 10
Zlnxi Yy =c" Z:(lnxi)2
i=1 i=1

f YO Inx; -y
Zzlgl(ln xi)z '

Using Marcus’s data:

. (15-In12) + (2.8-1n2.5) +--- + (69 -In10.5)
. ~ 2.81.
(In1.2)2+ (In2.5)2 4 - - - + (In10.5)2

The following Python code generates a scatterplot of Marcus’s dataset and plots

the best-fit logarithmic model found above.

Import necessary libraries
import numpy as np
import matplotlib.pyplot as plt

Data: days since harvest (x)
x = np.array([1.2, 2.5, 3.1, 4.8,
y = np.array([1.5, 2.8, 3.2, 4.0

Compute cx*
log_x = np.log(x)
c_star = np.sum(log_x * y) / np.sum(log_x**2)

Define the model
def model(x):
return c_star * np.log(x)

Plot data and the model
plt.figure(figsize=(8, 6))
plt.scatter(x, y, color=’blue’, label=’0bserved Data’)

and observed ripeness (y)
5.6, 6.0, 7.2, 8.1, 9.0,
, 4.5, 4.8, 5.5, 6.0, 6.3, 6.9])

10.5])

plt.plot(np.linspace(l, 11, 100), model(np.linspace(l, 11, 100)),

10

color=’red’, label=f’Model: $f(x) = {c_star:.2f} \\1ln x$’)
plt.xlabel (’Days since harvest (x)’)
plt.ylabel(’Ripeness (y)°’)
plt.title(’Ripeness Prediction’)
plt.legend ()
plt.grid(True)
plt.show()

1.2 The constant model and loss functions

@ Key ldea

The constant model is given by f(c; x) = c for some ¢ € R. Note that ¢ may depend
on the training data, but f always outputs the same value regardless of input.

In this section we focus on the simplest model of all: the constant model. Don’t
be fooled! The constant model plays a foundational role in data science. Training the
constant model amounts to answering the question: “What is the best single value to
represent or summarize all of my data?” This simplicity makes the constant model an
essential starting point for understanding more complex models, as it allows us to more
easily understand questions such as:

e How do different loss functions L lead to changes in the minimizer c* for the
empirical risk?

* How is the constant model’s minimizer ¢* impacted by outliers or other unusual
patterns in the training data?

* How do transformations in our training data, like scaling and translations, change
c*?

In this section we will try our best to find some answers to these questions. We begin
with an exploration of different loss functions. In Section 1.1, we used the square loss,
which more descriptively may be written

Lsq(c; (x,y)) = (y = f(c; x))?

where x is an input variable, y is an output variable and f(c; x) is our model. We
chose this loss function because it is easy to do calculus with (this will be a theme that
continues throughout the book), and in turn, it’s relatively easy to find its minimizer. In
Annabeth’s example, the training data consisted of both some input variables x; as well as
their actual output variables y;. This is an example of supervised learning, where labels
or targets are known while we train the model (sometimes described as “at training
time”).

In the setting of the constant model, we will assume our training data consist of the
values {x;}" ,, where x; € R for each 1 < i < n. Our training data does not come pre-
equipped with targets; rather, our goal is to interpolate the training data with a single

11

@ Note: the terms
which appear to the
right of the semi-colon
are whatever training
data is available; thus,
you may see (x;,Y;) or
simply x; depending on
whether the model is
“supervised.”

? The square loss
penalizes large errors
more heavily than
small ones due to
squaring. Why might
this be useful for cer-
tain applications, like
financial forecasting?

constant. This is called unsupervised learning, where no examples of targets or output
variables are provided to the data scientist at the time they train their model. Thus, in
our setting, the square loss takes the form

Leq(c; x;) = (c — x;)*.

Another type of loss function which is of interest to us will be the absolute loss, which
is given by

Labs(c; xi) = |c — xi].

We may also consider the p-loss, where 1 < p < o is a fixed parameter (and is not
trained or subject to learning):

Lo(c; xi) = |c — x;|P.

Note that when p = 1, L, = Laps and when p = 2, L, = Lsq. We begin by exploring the
tirst question, and obtain a formula for the minimizer c¢* of the empirical risk in the case
of the squared loss.

) Theorem 1.2.1

The minimizer c* for the empirical risk associated with the square loss is given by
the mean of the training data, i.e.,

T = E ZXj. (2)

We will use the notation X to denote the mean of the scalars x1, ..., x,. This notation
will also be applied to vectors, matrices, and beyond, but will always have a shared
meaning: take the list of objects we’re considering, add them up, and divide by the total
number. The proof of Theorem 1.2.1 should feel fairly natural after the examples in the
preceding section.

) Proof

The empirical risk for the square loss is given by:

n
Y (c—x;)?
i=1

.

3

As usual, we compute its derivative with respect to c,

dR 1
a = EEZ(C—XI)
Simplifying:
2 n
— ==Y (c—x)
e i=1 l

12

We set flj—ls = 0 to find the critical point.

n

Y (¢ —x) =

i=1

Expanding and rearranging, we have:

IO — =T
i=1

Thus, there is a critical point c* corresponding to the mean of the training data.

We can check that it is a true minimizer by using the second derivative test. The
second derivative of R(c) with respect to c is:

d?R 2 &
T D

i=1

2
— o i = i
n

. 2 . . — . T
Since ‘3171; > 0, the critical point ¢* = ¥ is indeed a global minimizer.

Next we consider the question: what changes if instead we consider the absolute loss
in place of the squared loss? To do this, we begin with an example which explores the
associated empirical risk.

) Example 1.2.2 Sarah’s coffee shop

Sarah is a data analyst tracking the daily number of customers visiting a small café
over four days. To simplify her analysis, she decides to use the constant model to
summarize the data. Her dataset for the number of daily customers is given below:

X1 | x| x5 | xy
203025 35

To understand how it varies as ¢ changes, Sarah wants to plot the empirical risk
R(c; {x;}%_,) associated with the absolute loss:

..|;>—\

1 4
:ZHC_’“"—‘ (Je = 20| + |c — 30| + |c — 25| + |c — 35]).
i=1

She plots R(c) as a function of ¢, and highlights a point ¢* which minimizes the
empirical risk.

13

10 :
= :
~ :
5 1

1 c* =275
O 1

15 20 25 30 35 40
c

From the plot, she sees that the empirical risk R(c) has many different minimizers
in the range 25 < ¢ < 30; she may take, for example c* = 27.5.

The preceding example suggests that finding the minimizer of the empirical risk
associated to the absolute loss will require more care, and can in fact be nonunique,
unlike the mean of the data. Our next fact shows that the minimizer we are looking for
is actually the median of our training data.

J Theorem 1.2.3

The minimizer c¢* for the empirical risk associated with the absolute loss is given
by any median of the training data, i.e.,

c* = median({x;}}" ;).

Notably, c* is not always unique.

J Proof

We can assume our data x; is numbered so that the data is arranged from least to
greatest; that is, we will assume

X <x <. < X1 < X
Note that the absolute loss is a piecewise function, i.e.,
(c—x;) if c > x;
Las(c;x;) = . 3
abs(1) {—(c—x,-) ifc<xi ()

It is important to point out that L(c; x;) is continuous but not differentiable when
¢ = x;, where it has a “corner;” so, when applying techniques from calculus to
find the minimizer of the empirical risk, we need to exercise caution. Therefore,
the derivative of |c — x;| is given by:

d 1 if c > x;,
aLabs(C; x;) = { DNE ifc=x;
-1 if c < x;.

14

The empirical risk R(c; {x;} ;) is given by the expression

1& 1
R(c):EZ|c—xi|:E(|c—x1|+|c—x2|+...+|c—xn|).
=

This consists of at most 1 + 1 piecewise-linear segments, which are linked together.
It is differentiable everywhere except at the points ¢ = xj, x2, ..., x, where it has
corners. By the critical point theorem (see Theorem A.1), a minimizer of R(c)
must occur where R’(c) = 0 or where R’(c) does not exist. Note that the second
derivative of R(c), when it exists, is zero. Therefore after finding the critical points
we must inspect them to identify those which correspond to minimizers of R(c).
To find these points, assuming ¢ does not equal one of the values x;, we can find
the derivative of R(c) using Eq. (3) as follows:

i—f=%(2(1>+ 2(—1>>.

x;<c xX;>c

In other words, % decreases by 1/n for each data point x; which is less than c,
and increases by 1/n for each data point x; which is greater than c. That is,

(i—lj = %(#{xi:xi <cl—#{x:x;>c}).

If there exist some values of ¢ where there are exactly as many data points which
are larger than c as those that are less than c, then ‘é—ls = 0. Sometimes these values
occur at a “corner,” where ‘é—f does not exist, but these will still correspond to
the minimizers of R(c). See the illustration below to get a feeling for what this
argument is telling us.

R(c) Slope is positive,
many x; which are

Slope is negative, less than c
many x; which are
Q

The minimizers correspond to the medians of the dataset, which do not have to be
unique. For example, the empirical risk of the dataset {1,2,3,4} has minimizers
for any 2 < ¢* < 3. On the other hand, the empirical risk of the dataset {1,2,3}
has exactly one minimizer when c* = 2.

15

When p # 1,2 the minimizer(s) for the empirical risk L, need not have “nice” closed-
form solutions, although this is occasionally the case for some values of p. Thus, the
absolute loss and squared loss correspond to certain instances where the minimizers of
the empirical risk are more readily obtained and can be discussed at length.

Note that both of the preceding discussions consider the case where the features x;
are numerical variables taking the form of arbitrary real numbers. As a third example,
we consider a more specialized setting. We assume our data x; € {0,1}, and represent
binary categorical variables (such as successes and failures, or boolean data). The en-
tropy loss is defined for parameters ¢ € (0,1) as follows:

Lu(cxi) = —[xjInc+ (1 —x;) In(1 —¢)].

The letter H is often used to denote entropy, a concept which is borrowed from the fields
of information theory and physics. Note that c may be interpreted as a probability that
the input data x; achieves x; = 1.

) Theorem 1.2.4

Assuming x; € {0,1}, the minimizer c* for the empirical risk associated with the
entropy loss is given by the mean of the training data, i.e.,

T = - 2 X;. 4)

We leave the proof of this fact as an exercise. Note that if all of our training data are
the same, the empirical risk has a “minimum value” of —co because of the asymptote of
Inxasx — 0.

We now turn to the second question which was highlighted at the beginning of the
section:

How is the constant model’s minimizer c* impacted by outliers or other unusual patterns in the
training data?

how are the minimizers c* affected by outlier data points? To get a sense of this, suppose
we come across the following hypothetical dataset:

{0,0,...,0,1000}.
~—

1,000 times

This dataset consists of the value 0 which has been observed 1,000 times, followed by
a single outlier: x7 991 = 1,000. If we wished to use the constant model to interpret out
data, the minimizer cg, of empirical risk for the squared loss would give us

. 1
csq—x—m(0+0+...+0+1000)~1.

So while the mean of the first 1,000 data points is zero, the addition of the outlier
x1,001 = 1,000 causes the mean to jump one unit. On the other hand, the minimizer c},
for the empirical risk associated with the absolute loss would be given by

Cps = median{0,0,...,0,1000} = 0.

This demonstrates that ¢*

abs and cgq respond differently to outliers, behavior which we
summarize below.

16

? If you are trying to
model housing prices
in a neighborhood with
the constant model,
when would it be
preferable to use the
squared loss? The ab-
solute loss?

@ Key ldea

The minimizer cg, for the empirical risk associated with the squared loss is more sen-
sitive to outliers than the minimizer c, . for the empirical risk associated with the ab-
solute loss.

Sensitivity to outliers is neither entirely good nor bad; it often depends heavily on the
context of one’s model. For example, in a scenario where outliers are rare but critically
important (detecting irregular heart patterns or seismic activity), developing a model
which easily responds to these is important. On the other hand, in scenarios where
outliers arise frequently due to noisy data (analyzing long-term weather patterns, or
tracking animals via radio telemetry), developing models which handle outliers in stride
without breaking down can be useful.

Finally, we can turn to the third question which was posed at the beginning of the
section:

How do transformations in our training data, like scaling and translations, change c*?

There are many different ways we could approach a question like this, so to conclude
this section, we investigate an example below and then explore extensions of this theme
in the exercises to follow.

) Example 1.2.5 Scaling and translating

Let {x;} ; be a fixed dataset of real numbers, and suppose we fix two parameters
a,b € R which are separate from our training data. Then, we define

yi=ax;i+b 1<i<n.

How does the minimizer cg, for the empirical risk associated with the squared
loss change under this transformation? We know from Theorem 1.2.1 that the
minimizer will be ¥, and thus with some algebraic manipulations, we have

I
y—EZ(axH—b)

1.3 Vector-valued features and targets

We wish to emphasize early on that our jobs as data scientists will require familiarity
with vector-valued features and targets in addition to the scalar-valued features and
targets encountered already in the preceding sections. With this in mind, we will revisit
two of the one-parameter models we have already seen: the simplified linear model from
Section 1.1 and the constant model in Section 1.2. These methods require familiarity with
the notion of vector lengths in higher dimensions. In this book, we will denote vectors

17

? In the two exam-
ples below, revisit the
modeling method at
the end of Section 1.1
and describe each step
in detail.

using the notation ¥ € R?. We will denote the coordinates of vectors in the form ()
where 1 < i < d. Matrices will generally be denoted with bold letters, for example,
X € R4 and their entries will be denoted X (/).

To start off, we revisit the idea of training data. In the preceding sections, we con-
sidered x1,...,x, € R. It is straightforward enough to generalize this by considering
instead vectors X1, Xy, ..., %, € R? as before. As a matter of convention, we use the letter
d > 1 to denote the feature dimension, which refers to the dimension of the vector space
from which are samples are being drawn. Some examples of vector-valued features
include:

* An array of 1000 black-and-white 28 x 28 images, where d = 784 and n = 1000;

* A collection of average daily temperatures for each week in a year, where d = 7
and n = 52;

* A dataset of average daily stock prices of 500 companies for each day of 2020,
where d = 366 and n = 500.

The target dimension refers to the dimension of the vector space from which targets
or labels are obtained. In this book we will use p > 1 to denote the target dimension.
Some examples of vector targets include, using the previous examples,

e The probabilities of each image belonging to each of the classes {cat, dog, horse},
where p = 3;

¢ The average temperature on each day of the week across an entire year, where
P=7

¢ The average return on $1,000 invested on January 1, 2020 in each quarter of the
calendar year 2020, where p = 4.

) Example 1.3.1 The vector-valued constant model

Let X = {X1,Xy,...,X,} denote a dataset of training examples in R4, Suppose we
wish to use the model

fleR)=c|.|=cly
1
where 1, is the vector of all ones in R?. We refer to this as the vector-valued con-
stant model where the feature and target dimensions are the same. In this setting,

the square loss takes on a slightly different notion, where instead we measure the
length squared:

d

Leq(c: %) = ||cTy — B2 = Y (c — 22
s=1

18

The empirical risk can then be written

1L e S
c):EZHcld—xin ZZ
i=1 z 1s=
As usual, to find the minimizer c*, we take the derivative of R(c) with respect to c:
2 n d (s)

o TS R R

Setting ‘ji—f = 0 yields
n d n d
ZZc—x)—Oﬁndc ZZ S,
i=1s=1 i=1s=1

which implies

Rl

- 1 n d
=g LL

Finally, we confirm that this critical point is a minimizer by checking the second
derivative. Note that

:no

2
g 2)
n

- sl = 285 -

which is strictly positive for d > 1. Therefore, by the second derivative test, c* is a
global minimizer. Thus, the minimizer of the empirical risk for the squared loss in
the constant vector model is simply the average over all of the coordinates in the
dataset.

) Example 1.3.2 Drone delivery

Imagine a drone delivery company that serves customers distributed across a two-
dimensional region. We represent each customer’s location by coordinates

%= (% (1), (2)) c R2
Our goal is to choose one fixed drone station location along a central street, us-

ing the constant model, in such a way that the average squared distance to all
customers is minimized. Suppose we have six customers located at the points

{(1,2), (2,3), (3,5), (6,4), (7,2), (5,1)}.

The following figure provides a visual representation of these locations:

19

V2 > x(1)

We adopt the constant model

fle®) =cly=c m ,

which, in this context, means selecting a single location (¢, c) that best serves all
customers. The empirical risk, defined as the average squared distance to the
customers, is

L =
R(e) =2} ll(e,c) — %l
o=
Minimizing R(c) yields the optimal value
¢ = i 3 (x4 2)
2Xx6 ! a

i=1
A direct computation shows

. ([(P14243+6+74+5)+(2+3+5+4+2+1)
e — 236 ~ 3.41.

Therefore, the optimal station location is approximately at (3.41,3.41), as illus-
trated below:

72)
AN i “
,»‘Optimal location (c*, c*)
X
® o" L G
\«:" T > 2(1)

We may also consider the following extension of the simplified linear model f(c; x) =
cx which we saw in Annabeth’s experiment with mice and drug development.

20

@ Compare this min-
imizer to the one we
saw in Eq. (1).

o Example 1.3.3 The vector-valued simplified linear model

Let X = {#,%,...,X,} denote a dataset in R¢, and suppose we pair each sample
with a label ij; € R?. Suppose we wish to use the model

F(R) = cx

where ¢ € R. We refer to this as the vector-valued simplified linear model where
the feature and target dimensions are the same. Similar to the preceding example,
we choose to use the loss function
2 _ ¢ (s) _ =(s)y2
Leg(c; %) = lleXi = ill* = Y (%" - 7,7)%

s=1

The empirical risk is

HRE 5 6)
Yo) (e® -7

i=1s=1

S |-

& .
= L%~ il =

To find the minimizer, we compute the derivative:

dR 2& &,) o)
R 25 S)
i=1s=1
Setting this to zero gives
n d n d n d
Y ew) g =0 = Y (@) =L La7,
i=1s=1 i=1s=1 i=1s=1
SO
2?21 zgi:l (f}s))2 i1 [1%i]]2

Here, we use the transpose notation X, /; to replace the dot product expression

ZS 1"_6 yz)

which appears in the numerator. We check the second derivative:

d?2R 2L 4 _(s)

@ L L&D

which is strictly positive whenever the data is not entirely equal to the zero vector.
By the second derivative test, this critical point is a global minimizer.

) Example 1.3.4 Meteorological modeling

Morning wind vectors X;, indicating both direction and speed, blow across a
coastal research station. The researchers want to predict the afternoon wind vec-

21

tors ij; under the observed hypothesis
flc; X¥) =cX, ce R

In other words, the afternoon winds tend to blow in the same direction as the
morning winds but with a different magnitude. Data was collected over four days,
yielding the following measurements:

i i Comment
(1,1) | (1.20, 1.40) | light breeze
(2,0.5) | (2.70,0.50) | gusty burst
(1.5,2) | (2.10, 2.50) | seabreeze mix
(0.5,1.5) | (0.55, 2.10) swirl

Using the formula derived earlier,

. (X i 19.825

= L A ~ 1.32.
X [1%12 15

c

The following figure depicts the morning wind vectors ¥; in blue and the observed
afternoon wind vectors ij; in green:

X4 4
%f%

X3
/11/ 1
% B
//r Y2

Finally, we compare the predicted afternoon vectors c*X; (dashed green arrows)
against the actual observations (solid green arrows), with the red lines indicating
the prediction error for each day:

— X;

--» Y
— error to ij;

\
RN
7

One thing worth emphasizing is that in the preceding examples, although each of the

features and targets were vectors, the model weights consisted only of a single parameter
¢ € R; so that even though we are learning a model with variables in high dimensions,
the tools needed to find the corresponding minimizer do not go beyond those which

22

we have seen so far and which are borrowed from single-variable calculus. In the next
chapter, this will change.

1.4 Exercises

Exercise 1.1

Determine whether each statement is true or false. Explain your answers.
(a) An input variable is another name for a target.
(b) Binary variables can only take on two values, such as 0 or 1.

(c) A loss function measures the difference between predicted output and actual
target.

(d) Numerical variables must be integers only.

Exercise 1.2
Fill in the blank with the appropriate term:
(@) A set of parametersina ______ are often referred to as
(b) If a variable can be any real number, it is called a variable.

(c) The difference between a model’s prediction and the true target is measured
by a

Exercise 1.3

Give a brief explanation in response to each question below based on the material
presented in the chapter. There can be several correct answers.

(a) Why do we distinguish between training data and testing data?
(b) What is the primary purpose of a risk function in modeling?

(c) In the context of the modeling method, which step ensures we have a way to
measure how well or poorly our model is performing, and why?

Exercise 1.4

You measure the temperature (in degrees Celsius) of a beaker of water in a freezer
at five different times (measured in hours). Answer each of the following ques-
tions. Explain your reasoning and calculations.

(a) What might you wish to model in this situation? Determine the input and
output variables for this scenario.

23

(b) Which of the following models is most appropriate in this situation?

2 h(cx)=clnx

fle;x)=ce ™ gl x)=cx

(c) Based on your answer to the previous part, write down the formulas for
the associated square loss and empirical risk in terms of xy,xp,...,x5 and

Y1, Y2,...,Ys.

(d) Find the minimizer c* for the empirical risk in the previous part.

(e) Suppose you collect the following data:

x| 1 | 2 | 3| 4]5
yi | 2222 [1023 | 411 | 1.25 | 025

Using the formula you found in the previous part for c*, plug in the data you
collected and write down your final model. (Python may be useful here.)

(f) If you collect one final data point (6,0.15) and use it as a test case, what is
the value of the squared loss with respect to your trained model?

Exercise 1.5

You track the population of a bacterial culture at six different time points (in hours)
and record the total count of bacteria (in thousands). Answer each of the following
questions. Explain your reasoning and calculations.

(a) What might you wish to model in this situation? Determine the input and
output variables for this scenario.

(b) Which of the following models is most appropriate in this situation? You
may assume that food and resources are available in unlimited quantities to
the bacterial population.

flex)=% gl x)=cyx h(cx)=ce

(c) Based on your answer to the previous part, write down the formulas for
the associated square loss and empirical risk in terms of x1,xp,...,xs and

Y, Y2,---,Ye-

(d) Find the minimizer c* for the empirical risk in the previous part.

(e) Suppose you collect the following data:

x| 1] 23] 4 | 5 | 6
yi | 54| 14.8 | 40.0 | 109.2 | 290.1 | 815.3

Using the formula you found in the previous part for c*, plug in the data you
collected and write down your final model. (Python may be useful here.)

(f) If you collect one final data point (7,2456.7) and use it as a test case, what is
the value of the squared loss with respect to your trained model?

24

If you find your-
self getting stuck on
some of the visu-
alization steps, the
matplotlib documen-
tation may be helpful:
https:/ /matplotlib.org/

stable /index.html.

Exercise 1.6

You have collected the following data about a certain plant species” height y; (mea-
sured in centimeters) at six weeks of growth after using different amounts of fer-
tilizer x; (measured in grams) in the water:

xi|11|24]32|46|55
yi |20]38 [50[59]64

You suspect the relationship follows the model f(c; x) = cIn(x). Complete the
following tasks in a Jupyter notebook, and explain your steps:

(a) Define a Python function model(x, c) that returns cln x.

(b) Write a Python function risk(c) that computes the empirical risk associated
to the p-loss for p = 3 and a given value of c € R.

(c) Define an array which contains values of ¢ which range from 0 to 100, using
n = 1,000 sample points. Then evaluate risk(c) at each point and store the
results in a separate array. Determine the value of c* in the array which leads
to minimal risk.

(d) Produce a scatterplot of the points (x;,y;) and overlay the line of best fit
f(c; x) = c¢*Inx. Be sure to:

¢ Include a main title;
¢ Label the horizontal and vertical axes appropriately;

¢ Show a legend.

Exercise 1.7

Give a brief explanation in response to each question below based on the material
presented in the chapter. There can be several correct answers.

(a) Define supervised learning and unsupervised learning in your own words.
(b) Which type of learning would best describe each of the following scenarios?

(i) Discerning whether the migration patterns of two herds of wild flamin-
gos intersect;

(ii) Predicting how many pounds of carrots will be sold at a local grocery
store based on previous years’ data;

(iif) Using readings from a heart monitor to predict cardiac arrest.

Exercise 1.8

Determine whether each statement is true or false. Explain your answers.

(a) The constant model is an example of supervised learning.

(b) The minimizer of the empirical risk for the square loss is always unique.

25

https://matplotlib.org/stable/index.html
https://matplotlib.org/stable/index.html

(c) The mean of a dataset is always one of the data points.
(d) The absolute loss is more sensitive to outliers than the square loss.

(e) The constant model always outputs different values for different inputs.

Exercise 1.9

Tom'’s bakery is well-known for its sourdough and was recently featured in a local
magazine. Tom records the number of customers each day in the first week after
the story appears: {15,25,28,36,27}. Using the constant model:

(a) Compute the minimizer of the empirical risk for the square loss.
(b) Compute the minimizer of the empirical risk for the absolute loss.

(c) If an outlier of 93 customers show up on the following day, how do the
minimizers change?

Exercise 1.10
Complete the following tasks in a Jupyter notebook, and explain your steps:

(a) Generate n = 100 numbers uniformly at random from the interval [a,b],
where a,b are fixed parameters, and store them in an array x.

(b) Define two functions mean(x) and median(x) which return their respective
quantities (if the median is not unique, simply return one of the possible
medians). Apply these functions to the data generated in (a).

(c) Repeat this process N = 1000 times, and store each corresponding mean and
median in a separate array.

(d) Plot two histograms: one of the means and one of the medians. Plot them on
the same figure.

(e) How do they compare? Explain your findings. It may help to play around
with different choices of a, b.

Exercise 1.11

Let {x1,x2,...,x,} be a given dataset of real numbers and let X denote its mean.
Suppose we add a new data point x,;1 and produce a new mean ¥’ in the process.
Find a formula for ¥’ in terms of x.

Exercise 1.12

Determine whether each statement is true or false. If the statement is true, write a
proof. If it is false, provide a counterexample.

26

(a) If x* is a minimizer for f(x), then x* is a minimizer for f(x)>.

(b) If x* is a maximizer for f(x) and f(x) > 0 for all x, then x* is a maximizer
for In f(x).

(c) If x* is a minimizer for f(x), and ¢ : R — R is a monotone increasing
function then x* is a maximizer for g(f(x)).

(d) If x* is a maximizer for f(x), and ¢ : R — R is a monotone decreasing
function then x* is a minimizer for g(f(x)).

Exercise 1.13

Consider the constant model for real-valued scalar input data. For a given loss
function, define the breakdown point p to be the smallest proportion of data that,
when modified at will, can cause the minimizer of the empirical risk to diverge to
infinity.

(a) Show that the breakdown point of the square loss is 1/n. That is, if
{x1,%2,...,x,-1} are any fixed data points, and x, = y for arbitrary y € R,
prove limy ;o X = oo.

(b) Assume the data {xq,xy,...,x,} are all distinct and 7 is odd, i.e., the median
is unique. Show that the breakdown point of the absolute loss is 0.5. The
proof consists of two steps:

(i) Suppose you m0d1fy strictly less than half of the data by defining

[n/ZH—l’ ..., X, =y for y € R. Show that

]}g%omedlan{xl,xz,.) .,x’(nmﬂ,. = max{xy, X2, ..., X2}
In other words, the minimizer of the empirical risk does not diverge to
infinity.
(ii) Suppose you modlfy strictly greater than half of the data by defining
[n /2] =y for y € R. Show that

/ I _
yhn;omedlan{xl,xz, S ATEE L, X} = oo

(c) Revisiting the Key Idea at the end of Section 1.2, explain how you can inter-
pret (a) and (b) in the context of sensitivity to outliers.

Exercise 1.14

The Huber loss function is a hybrid loss function that behaves quadratically for
small deviations and linearly for large deviations. It is defined as follows for a

27

given dataset {x1,xp,...,x,}:

2(c—x))?, if|c—x

1
LHuber(C; xi) : {%
2

<
He—xi| -4 ifflc—x] >

1
27
1
2
The empirical risk function for a given choice of ¢ then becomes:

1 2
RHuber E Z Huber (& xz
i=1

(a) Compute %RHuber(c) explicitly. Clearly state where it is differentiable and
explain why the function is not differentiable at certain points.

(b) Assume your data x; have no large deviations. In particular, assume all dat-
apoints lie in a small interval (—J,9) around x = 0 for § < 1/4. Prove that
the minimizer for Rygyper(c) is ¢* = X.

(c) Explain why the minimizer for Ryper(¢) should be closer to the median of
the data if your data has large deviations and is very spread out on a large
interval, then. Feel free use examples or Python plots.

Exercise 1.15

Let {x;}" ; be a collection of n real numbers, and recall the square loss for the
constant model f(c; x) = c:

Lsq(c; x;) = (c — x;)>.
In this problem we will work with the maximum risk, which is given by:

Rmax(c) = 112?2; qu<c xz)

(a) Show that

Reu(e) = (jmps o)

(b) Assume the data is ordered from least to greatest: x; < xp < ... < x;,. Show
that if ¢* is a minimizer of Rmax(c), then c* lies in the closed interval

[x1, X1].
Hint: Assume that c* did not lie in this interval; can it still be a minimizer?
(c) Show that the midrange, given by

x« _ X1+ Xn
= 5

is a minimiser of Rmax(c) and that it is unique when x(3y # x(,

(d) Explain how sensitive c* is to outliers when compared to the mean and the
median of the dataset (you may use examples here).

28

Exercise 1.16
Determine whether each statement is true or false. Explain your answers.
(a) The feature dimension d represents the number of data points in a dataset.

(b) The target dimension p refers to the number of features used to represent a
data point.

(c) The vector-valued constant model assigns the same scalar value to each co-
ordinate of the output vector.

(d) The vector-valued simplified linear model can be used when the feature and
target dimensions are different.

(e) The empirical risk function for the vector-valued constant model is mini-
mized by the component-wise median of the dataset.

Exercise 1.17

Suppose all feature vectors in a dataset {¥;} ; are scaled by a factor &« > 0, so that
each X; is replaced with aX;. Explain how the minimizer c¢* of the vector-valued
constant model changes under this transformation.

Exercise 1.18

Throughout the book we use summation notation very often. Work through the
following without a calculator.

n
(a) Prove that) (x; — %) = 0 directly from the definition of .
i=1

(b) Evaluate the telescoping sum
Sw = Y [(k+1)?2—K], n>1

Your answer will depend on n.
(c) Let {ajj}1<i<y1<j<m be real numbers. Show that
n m m

Y Ya = Y Yap

i=1j=1 j=1i=1

29

(d) Look up formulas for each of the following expressions:

N
I
sy

1=
~.
N

N
I
iy

crt c¢,r > 0.

-

N
Il
L

You do not need to write proofs but you are encouraged to review them.

Exercise 1.19

Fix d > 1. Let ii,3,@ € R? be fixed vectors and let A, B € R?*? be fixed square
matrices. Recall our convention for the dot-product notation:

'y = Z
s=1
Here, (-) " denotes matrix transpose.
(a) Prove both of the identities below:
() @' (7+
(i) (A) 7 =u"AT7.

You may use the summation form of matrix multiplication or properties of
matrix transpose.

(b) With d = 3, let

2 01 1 4

A=|-1 3 4|, i=|-2|, =10

0 25 3 -1
Compute:
(i) Aii,
(ii) '3,
(iii) ATA,
—»T—o
@) e

30

Exercise 1.20
A coastal research station records hourly surface current velocities

% = (&Y

, a‘c’fz)) € R?,

(1)

. (1) . ~(2) .
measured in metres per second, where ¥, is the eastward component and xl() is

the northward component. Oceanographers suspect that during the study period
the motion is driven predominantly by a single tidal stream that always points in
the direction

- [1

=12}

but whose speed (magnitude) is unknown. They therefore propose the vector-
valued constant model

f(c; %) = cd, ceR.
Six velocity measurements (in ms~1) are listed below:
{56,-}?:1 = {(0.60,1.21), (0.70,1.47), (0.50,0.93), (0.65,1.25), (0.55,1.11), (0.72,1.38)}.
(a) Identify the input and output variables, state the model, and write down a

formula for the square loss Lsq(c; ¥) in this setting. Is this an unsupervised
or supervised scenario?

(b) Write the empirical risk function

il & y
R(c) = - Y Leq(c; %)
i—1

for the data above and derive the critical-point equation

c) Verify that the second derivative is positive and conclude that c* is the unique
y P q
global minimiser.

(d) Using a few lines of Python, evaluate the sums in part (b) for the six obser-
vations and report the numerical value of c*.

(e) Interpret c*d physically. How well does this single vector summarise the
observed currents? Comment on the suitability of the constant-direction as-
sumption.

31

Exercise 1.21

A portable air-quality device measures two pollutant concentrations (ozone and

nitrogen dioxide) simultaneously. Because the factory calibration drifts over time,
a laboratory performs reference measurements j; = (yl-o3, y?loz)T

samples for which the field device reports X; = (xZQ3, x?OZ)T. Engineers hypoth-
esise that both channels are off by a common multiplicative factor ¢ € RR; that

is,

on the same air

f(C,' fl) s C"_C’lll

which is realized as the vector-valued simplified linear model. Five paired readings
(all in ppb) are given below:

i % 7

1] (9.0, 12.0) | (273, 36.6)
2| (105, 14.2) | (30.8, 41.4)
3| (83, 11.1) | (24.7, 33.6)
4 (11.2, 15.0) | (33.7, 45.5)
5| (9.7, 13.0) | (28.6, 38.4)

Work through the modeling recipe.

(a) Clearly state the input variables, output variables, model, square loss func-
tion, and empirical risk function (use n =5and d = p = 2).

(b) Using the results in this chapter and a bit of Python code where necessary,
tind the value ¢* which minimizes the empirical risk associated to the square
loss. You do not need to derive the formula(s) from scratch.

(c) Explain why ¢* must be positive for any non-zero dataset.

(d) Suppose future field readings are multiplied by c¢*. What improvement (or
risk) does this bring when monitoring pollutant levels in real time?

32

2 The Linear Model

“All models are wrong, but some are useful.”

- George Box

Linear regression lies at the very heart of statistical learning: by fitting a straight
line (or more generally, linear subspace) through data, we can attempt to capture the
simplest relationship between features and targets, in the process laying the groundwork
for more elaborate models. This chapter will systematically cover the linear model from
the “simple” case of scalar features and targets to the most general case of vector features
and targets.

2.1 Simple Linear Regression: Scalar Features, Scalar Targets

) Example 2.1.1 Predicting fuel economy from horsepower

To motivate our discussions of the linear model, consider the relationship between
engine power and fuel efficiency using five cars from the Motor Trend “mtcars”
dataset (1974)". In each case we have a single feature x; given by the horsepower
(hp) of the engine, and a single target y; given by the observed fuel economy in
miles per gallon (mpg):

Model | Datsun 710 Merc 240D Valiant Hornet Sportabout Duster 360
Horsepower x; (hp) 93 62 105 175 245
Fuel economy y; (mpg) 228 24.4 18.1 18.7 14.3

By visualizing the points from the dataset on a two-dimensional set of axes, one
observes a downward-sloping trend: as horsepower increases, mpg tends to de-
crease.

33

26 T T T I

22 - 2
20 8
18

14 -
12 | a
10

50 100 150 200 250
Horsepower (hp)

Fuel economy (mpg)
[]

Thus we might attempt to model the relationship using a line of the form
y=ax+b

to quantify exactly “how many mpg you should expect given the vehicle horse-
power.” The modeling method gives us a framework to identify the best slope and
intercept for the scenarios like this.

“See https:/ /www.rdocumentation.org/packages/datasets/versions/3.6.2/topics /mtcars

Simple linear regression is one of the most foundational statistical models, and serves
as a building block for more advanced machine learning methods. The simple linear
model is used to model a scalar-valued target y in terms of a scalar-valued feature x
using a linear function with trainable weights 4,b € R. Formally, given an input-output
pair (x,y), the model we consider takes the form:

f(a,b; x) =ax+b,

where 4,b € R are the weights of the model that we seek to learn from data. The param-
eter a is often called the slope of the model, and the parameter b is often called the in-
tercept or bias of the model. Simple linear regression refers to the process of finding the
best parameters a*, b* for a specific collection of training data {(x1,v1), (x2,¥2), ..., (Xn, yn) }-
The line y = a*x + b* is sometimes called the line of best fit for the training data.

The single biggest difference between the simple linear model and the models we
considered in Chapter 1, and what will become the main source of complexity for the
sections to follow, is the fact that the model f contains more than one trainable parameter;
in this case two: 4,b € R. However, the process of training the linear model remains
generally the same overall. To quantify the error associated with a particular choice of
a,b and a fixed input-output pair (x,y), we can use the square loss:

Lg(a,b; (x,)) = (y — (ax + b))2. ©)

34

https://www.rdocumentation.org/packages/datasets/versions/3.6.2/topics/mtcars

The empirical risk is then given by the mean loss over all data points:

(yi — (ax; +b))*.)

S|

Il
—_

R(a,b;{(xi,yi) }ioy) =

1

As we did in Chapter 1, we may write R(a,b) for short, with the understanding that
R(a,b) is a function of a, b determined by the data points {(x;,y;)}" ;. Now since R(a, b)
is a differentiable function of two variables, we can find its minimizer by searching for
critical points. First we compute its partial derivatives:

JR 01 2

e i —(ax; +b

oa aang(y (i +))
:%EZ(yi—(axi—i-b))%(yi_(”xi+b))
= %é(yi — (ax; +b)> (—xi)
:—%gxi (yi—(axier));

%:%%iM—Wﬁ“f

~
I
—_

2(yi — (ax; + b)) = (vi — (ax; + b))

S

-

~
I
—_

SN I

=
Py
S

— (ax;+ b)) (—1)

~.

||
1=~

SIN

(y, (ax; + b))

N
Il
—

which are then set equal to zero:

I

N
Il
—

(v) =0,

1=

SII\J

(yl (a*x; + b*)) =0. (8)

N
I
—_

The pair of equations given in Eq. (8) are examples of normal equations, which generally
speaking are the equations formed by setting the partial derivatives of the empirical risk
associated to a particular model and loss function equal to zero; and which depend on
the parameters of the model in addition to the training data. Multiplying both equations
by —7 yields

0,

i X; (3/1' — (a%x; + b*)>

i=1

i((a xl+b*)>

i=1

35

? Why does H(a,b)
not depend on a,b at
all? (The reason is re-
lated to the fact that
the loss function is
quadratic)

The second equation can be rearranged into the form

i}/i =a" ixi + nb*,
i=1 i=1

so that
1 n n
= xyi—a*xxi =y —a'x.
i=1 =1

Next, substituting b* = i — a* ¥ into the first equation gives
n

in(]/i — (a*xi—i—y—a*?)) =0.

i=1

Expanding the expression inside the summation leads to

ié%‘(]/i—y))—0

Solving for a* yields the well-known formula for the slope:

n

—a*2x1<xz—

i=1

o Lim (i —X) (i —Y)
it (xi—x)>

Once a* is determined, the optimal intercept is given by

a

b*=y—a*x.

To further verify that the parameters (a*, b*) indeed minimize the empirical risk R(a, b),
we apply the second derivative test for functions of two variables (see Theorem A.3).
The Hessian matrix of R can be found by calculating the three second-order partial
derivatives of R as follows:

92 o[2 1 2
s R@b) =3, —zgxf@f—(”’ff“’ﬁ P
92 o[2 1 2
aba (ﬂ b) ab _Eizzlxi<yi_(axi+b)> :Eizzlxi
02 ol 24

2 R(a,b) = % _E;<yi_(axi+b)> 2.

Therefore the Hessian is given by:
o) = (450 PE).
n 1:1 Xi 2

In this case, it happens that H(a,b) does not depend on any specific point a,b; rather,
it depends only on the training data {(x;, y;)}? ;. The upper-left element %R(a, b) is
positive, and the determinant of the Hessian is

det(H (Zx — (lilag)Z)

36

which is positive as long as all of the x; are not identical. This can be seen as follows.
Let ¥ € R" denote the vector containing the training features x;, and let T € R" denote
the vector of all ones. By the Cauchy-Schwarz inequality (see Theorem B.3), we have

2
n n
<2xi) =1 < |Z)?T)* = n (Z?@Z) ,
i=1

i=1

and unless ¥ and 1 are linearly dependent (which happens only when all of the x;’s are
constant), the inequality will be strict, that is

(5)-(E)

Therefore, the critical point (a*,b*) is a global minimum of R(a,b). These parameters
define the best-fit line under the square loss. We summarize this discussion in the form
of a theorem below.

J Theorem 2.1.2

Let {(x1,y1), (x2,¥2), ..., (xn,yn)} denote a collection of training data consisting of
scalar-valued features x; and targets y;. Suppose we wish to model a target y in
terms of each input feature x using a linear function f(a, b; x) given by the formula

f(a,b; x) =ax + 0.

Then the optimal parameters a*, b* € R which minimize the empirical risk R(a, b)
(see Eq. (7)) for the squared loss (see Eq. (6)) are given by
o= L (i —X) (Y —)
Yia(xi—x)? 7
b*=y—a*x. 9)

' Example 2.1.3 Predicting sales from advertising

Loretta owns a small business and records her weekly advertising expenditure
(in thousands of dollars) and the corresponding sales (in thousands of dollars).
Suppose the data is

x; (advertising) | 1.16 | 2.24 | 2.88 | 4.1 | 5.1
y; (sales) | 2.16 | 2.81 | 3.44 | 472 | 631

The sample means are ¥ = 3.096 and y = 3.888. We can compute

8
Y (% —%)(y; — V) ~ 10.054
i=1

5
Y (x; — %)% ~ 9.551.
i=1

37

Thus, based on Eq. (9), the optimal slope is given by

e) 1(x1)(Zi —y) 10054 1.053,

and similarly the intercept is
b* =y —a*x = (3.888) —a*(3.096) ~ 0.629.
The resulting model, i.e., line of best-fit for Loretta’s data, is given by
f(a*,b%; x) = 1.053x + 0.629.

The following Python code demonstrates the computation and visualization of this
model:

import numpy as np
import matplotlib.pyplot as plt

Data: Advertising expenditure (in $1000) and Sales (in $1000)
x = np.array([1.16, 2.24, 2.88, 4.1 , 5.1 1)
y = np.array([2.16, 2.81, 3.44, 4.72, 6.31])

Compute means
x_mean = np.mean(x)
y_mean = np.mean(y)

Compute optimal slope and intercept
a = np.sum((x - x_mean) * (y - y_mean)) / np.sum((x - x_mean)**2)
b = y_mean - a * x_mean

print ("Optimal model: f(x) = {:.2f}x + {:.2f}".format(a, b))

Plot data and fitted line

plt.scatter(x, y, color=’blue’, label=’Data’)

x_fit = np.linspace(min(x), max(x), 100)

plt.plot(x_fit, a*x_fit + b, color=’red’, label=’Fitted line’)
plt.xlabel (’Advertising (in $1000)°’)

plt.ylabel(’Sales (in $1000)’)

plt.title(’Simple Linear Regression’)

plt.legend ()

plt.grid(True)

plt.show()

The scatterplot and line of best fit generated by the Python code above should
roughly resemble the picture below.

38

10

* (xi/ yz)
— f(a*,b*; x) = 1.053x + 0.629
8
6 ()
. (]}
4
2 ()
% 1 2 3 4 5 6

We can push the theoretical setup established in this chapter a bit further and see, for
example, how the formulas we derived hold up when we want to make small changes to
our training data. Suppose for example we have a dataset {(x;,y;)}?_; where the values
x; are measured in years. For example, we might have x; = 2025 and x, = 2020. The
units are somewhat large and unwieldy, so what if instead we considered features x;
which are given by “years since 2020,” in other words, by setting x; = x; — 2020? The
following example follows in the footsteps of Example 1.2.5 and addresses this question.

o Example 2.1.4 Effect of Translating Features

Consider a simple linear regression model trained on data {(x;, y;)}/ ;. Suppose
we translate every feature by some fixed constant & € IR, i.e., define new features

X} = x; + a.

We can use the formulas provided in Theorem 2.1.2 on the translated data to see
how the optimal parameters and line of best fit change. First, the new mean is

x' =X+ a.

Notice that

xXi—x'=(xi+a)— (X+a)=x—%,
so that the computation for the new slope, which we might call 4’, remains un-
changed:

)L =)y i —D)wi—y) _ .

— — = - = 7,
?zl(xf —x')? Yoo (xi — X)?

The new intercept, denoted b’, becomes

X =y—a(Xta)=F-a'X)-—ata=b"—a"a

bV =9—a

39

Thus, translating all training features by a constant a leaves the slope unchanged
while shifting the intercept by —a*a. Concretely, our new parameters a’, b’ satisfy
*

a =a

V' =b*—a*a.
For example, if the original model is given by
f(a*,b*; x) =1.6x+0.2,

translating the features by & = 2 produces a new model f given by

Fdb; x) = Léx + (0.2 — 16 x 2) = 1.6x — 3.0.

Below, we include an illustration of this example. The original best-fit line y =

f(a*,b*; x) intercepts the y-axis at (0,b*), while the translated model f(a’,b’; x)
(dashed red) intercepts at the new location (0, b’).

Y
81 —
° Original Data o
[Translated Data ."
_f~(a*/ b*,' x) = a*x + b* “‘o
=== f(a*V; x) =a*x+ 1 R
0.‘
4 1 o"
Rl
Original i
intercept b* = 2 R
! X
2 4 6 8
Translated
intercept b’ =0

There are many other ways we could explore how the optimal parameters for a sim-
ple linear regression model behave under transformations of our data; the preceding
example serves merely to give us a sense of how we would approach such a question.
We continue this theme in the exercises at the end of this chapter.

A quick note on terminology: the empirical risk associated with the square loss comes up
quite a bit in data science, so we usually refer to it by the alternative name mean squared
error (MSE). More specifically, we define

—]- L — —
MSE(@, b) = — Z(yi — %X+ b)>. (10)

2.2 Warmup: The constant model revisited

In Section 2.1 we stepped up the complexity of our toolkit by considering models of
the form f(a,b; x) = ax + b which contain two parameters. As we go forward into the
remainder of the chapter, we will only be expanding on this trend by scaling up from
two parameters to models which contain as many as we want. In this warmup section,
we will take a moment to return to the constant model we introduced in Section 1.2,
and later in Example 1.3.1. This time, we assume our training data are vector-valued, i.e.
X1,%,...,%, € R%. The vector-valued constant model is defined by

f(w; X) = w,
where @ € RY is a single vector containing d entries. In this unsupervised scenario, the
goal is to find the vector @ which minimizes a given risk function and thus best “sum-
marizes” our data. It is important to note that although f has a very simple structure,
the vector @ contains d weights, so the resulting optimization problem is going up a step

in complexity even if the model itself is relatively simple. To measure the error incurred
by a particular choice of @, we use the square loss:

d) .
Leg(@; %) = @ — %2 = Y (@) — 272, (11)
j:l

The empirical risk, as usual, is then given by the average loss over the dataset:

I, . 1 oo
R(w; {%;}",) Zqu ;%) ==Y @ — %2 (12)

i=1

3

To find the minimizer @* we need to compute the gradient of R(@) with respect to @ and
set it equal to the zero vector. We can do this by viewing R as a function of d variables
oM @, . @@ e R and computing, for each 1 < j < d, the partial derivative ag—(].)R.
Fixing j and using Eq. (11), we have
d
i)

QU

— x|?

o
=

N
Il
—_

R(@) =

Q)
v 2
‘\\._/.
= S|

I
St
s
D=
M=~
i,
N
=
|
R
=
=
N

o
I

v L

Il
S|~ Q
M= =
| —— | 3
Q
=
=
M=~ =
—~
S
=
|
=U
=
N—
N
—_ 1

-
Il
=
T
—_

Next we investigate closely the expression in the brackets on the right:
3 ¢ J
9 (k) _,(k) 2_ 9 [=1) _ 4(1) 2 —2(2) _,.(2)) —(d) _,(d) 2
50 kE_l(w X) =500 [(w X))+ (@)+ (@ X) } :

Notice that since j is fixed, the term in the sum will only depend on ") whenever the
index k matches j; otherwise the derivative is zero. So when we evaluate the partial
derivative, most of the terms vanish and we have:

o) d) . . .
_9 o) 2 O o) 20N2 o) 20)
= k:Zl(w x)% = aw()(w X)) =2(@V —z)

41

Therefore, returning to the preceding calculation, we have

: 18
5= Iy g 50
wmmw—ngPW’)

Notice that 1y , 55(]) is actually the j-th coordinate of the mean vector x = 1 S i X
Thus
d . S =0)
- —2() — ¥V
aw(DR(w) 2(w x).

Since this expression holds for any given coordinate index j, we can summarize our
findings by writing the following description of VR(@):

— . =(1
aw}ﬂ%(w) 2(w1) — xizi)
S~ R(w 0w % .
VR(®) = aw<2>.() _ [2(@ -) = 2(@ — X).
3 i L
@ R@)| 2@ -3

Therefore, after dividing by the factor of two, we can conclude that VR(@*) = 0 if and
only if @* = X.

Verifying that the critical point we have found is a true global minimum requires
some more advanced linear algebra and multivariable calculus (see Theorem A.4). In
DSC 404, if the model under consideration has one or two parameters you must verify
that a given critical point is a true minimizer of the empirical risk using the second
derivative test; if it has more than two parameters, you are allowed and encouraged to
skip this step.

We can write this conclusion as a theorem below.

o Theorem 2.2.1 Optimal Constant Model for Vector Features

Let ¥1,%y,...,% € R? denote a collection of training data consisting of vector-
valued features. Suppose we model the X;’s using a single vector given @ using
the formula

f(@; %) = .

Then the unique minimizer of the empirical risk R(w; {¥;}" ;) (see Eq. (12)) asso-
ciated to the square loss Lsq(@; X;) (see Eq. (11)) is given by the vector mean of the
training data:

e

i=1

Rll
:lr—\

42

o Example 2.2.2 Network traffic baseline for anomaly detection

A corporate information security firm wishes to design a model to detect anoma-
lous network behavior. Each network flow observation is represented by a 2-
dimensional feature vector X; with components given by:

1)‘
2)‘

; packet count

7!
5(’1(flow duration

The vector-valued constant model selects the single “baseline” flow signature @*
that minimizes 1Y ||@ — ¥;||%, i.e. the mean flow vector. New traffic instances
whose flow signature vectors are far from @* can then be flagged as anomalies.
Suppose we observe five flows:

Flow i | Packet count Flow duration (s)
X1 50 0.20
X 60 0.25
X3 55 0.22
Xy 80 0.30
X5 65 0.27
The mean vector is
- 2 2 .224-0. 27\ ~
oF = (50+6O+555+80+65’ 0.204-0 5+05 +0.30+0) ~ (62, 0248)

0.35 T T T I

o
|68}
[

» Baseline 0"

0.25 | ° % 3

Duration (s)

=

N
T

®
|

0.15 * * * *
0 50 60 70 80 90

Packets

This “star” marks the constant-model baseline. In practice, any new flow whose
feature vector falls far from this point (in Euclidean distance) is treated as anoma-
lous.

2.3 Multiple Linear Regression: Vector Features, Scalar Targets

Now that we have warmed up our multivariable optimization skills, we can turn

43

the page to the next topic on our journey, which is multiple regression. Multiple linear
regression extends the idea of simple linear regression to the case where each training
example consists of a feature vector ¥ € R? and a scalar target y € R. The main idea
remains the same: we will attempt to model y as a linear function of ¥; however, the
number of parameters and structure of the function will be different than before.

Some scenarios where a multiple linear regression model might be appropriate in-
clude, e.g., predicting housing prices from various attributes, estimating sales based on
multiple indicators, or forecasting outcomes in medical studies where several measure-
ments are taken. The multiple linear regression model is given by the general formula

where @ = [@() @ ... @] " € R¥is a vector of weights and b € R is the intercept
parameter. More explicitly, if we write

21 o)

. 7 . w2

X =) , W= . ,
(@) @)

In other words...

@ Key ldea

The multiple linear regression model f(@,b; ¥) = @' X+ b can be thought of as taking
each feature coordinate ¥\/), applying a corresponding weight @) which can be posi-
tive or negative, adding up each term, and finally adding an “offset” or “intercept” b.

Before we tackle the general overarching question of how to find the optimal param-
eters @W* and b* for the multiple linear regression model, let’s first consider an example
in dimension d = 2.

) Example 2.3.1

Rosabel works at a real estate firm and wants to design a model to predict the final
sales price (in thousands) of a home given two datapoints which can be found in
her database: square feet of the house, and the mean sales price (in thousands) for
all homes in the same ZIP code during the last year. Her dataset consists of three
houses which have recently sold along with their closing sales prices, given below.

44

square feet | ¥V | 1285 | 2250 | 2125

—| 2
mean sales price, ZIP code in thousands | X () 158 99 124

actual sales price in thousands‘ Yi ‘ 325 ‘ 221 ‘ 445

In the language of input-output or feature-target pairs, Rosabel’s training dataset
can also be described as the set

(] o) (570 ([26])}

Rosabel decides to use a multiple linear regression model as follows. She defines
the model f(@, b; X) by the general formula

f (Zﬁ, s F{g]) — oMz 4 522 4 b,
X

where the numbers @1, @), b € R are to be determined. Her next goal is to find
which values of these parameters lead to the most accurate model f. To quantify
the error of a prediction for a single training pair (X,y), she decides to use the
square loss

2
Leq(@,b; (Z,y)) = (y — (@ ¥+ b))? = (y — (@D 7V + 3® 72 4 b)) .

The empirical risk over Rosabel’s dataset is then given by

3 2
R@,0) =2 (- @) +32 2 +5))"
i=1

To find the parameters that minimize R, we set the partial derivatives with respect
to @1, @2, and b to zero. This will require a bit of work, so let’s take things one
step at a time. First, we have

=R @b = —3 Zl 3 (yi - @Dz + 8@ 72 + b)>
#07 r — (@77 4 b
2 [[G D)
:—5 fé yz—(w XZ+b)
¥ | Llys— (@' % +Db)

=—212250| |221— (@"¥X,+b)
2125| |445— (@' %3 +b)

(14)

) '1285] i [325 —(@TE + b)]

where in the second line we re-wrote the sum in the first line as a dot product
over the entries of two vectors obtained by inspecting the original expression. The

third line arises by replacing the generic notation 3?5]) and y; with the actual values
from Rosabel’s dataset. It turns out that this equation is a bit more complicated

45

@ You should at-
tempt to repeat these
steps on your own.

than the ones we have seen so far; so we can attempt to simplify things a bit in a
step-by-step manner. Let’s begin by defining a vector

which will contain all of our model parameters simultaneously. In a similar man-
ner, let’s go ahead and define a modified version of each feature vector by adding
a one in the first component. Specifically, we write

1 1 1
7 = |1285|, %, = |2250| , 73 = |2125
158 99 124

These vectors Z,Z», Z3 are called the design vectors, or augmented feature vectors,
of the dataset and are simply used to rewrite the normal equations for the multiple
regression model in a less horrendous manner. Now let’s return to Eq. (14). Using

0,71,72,Z3 instead, we can write things in the form

112857 ' [325 — (@ 7% + b)
R(@,b) = —= |2250| |221 — (@ "X, +b)
2125] [445— (@' %5+ D)
(12851 ' [[325] |Z]6
— —Z (2250 221| — |Z)6 (15)
2125 445 710

Next we can recognize that the right-hand side can be realized as a matrix-vector

product, since each coordinate is a dot product of the same vector g with various
vectors 7;. That is, if we define the matrix Z € R3*3 given by

7 1 1285 158
Z=|Z)| = |1 2250 99 |,
Al 1 2125 124
then Eq. (15) becomes
, [1285]" ([325] [0z 1285])
—Z 12250 21| — |§75,| | = -2 [2250 (g—ze).
2125 445 77z, 2125

The matrix Z is called the design matrix. Now all of this arises from only
%R(i}, b). If we repeat these steps for %R(zﬁ,b) and 2 R(@,b), then we have

46

the following family of three normal equations

O R(@,b) = —> égggr (7-28) =0
ow(3 12125
[158] '
85(2)1%(@6,19) - —% 19294] (y’-z@) ~0
9 2 [y
—R(®,b) = —3 }] (g‘—ze) — 0.

Each of the numerical column vectors which appear in the right-hand side are
actually just columns of the design matrix Z. Using what we know about matrix-
vector multiplication, the entire system of normal equations can therefore be recast
into a single matrix-vector equation given by

—%ZT (—26) =0.

VR(@,b)

This is the payoff of our investment into reformatting the training data: the normal
equations, which initially are quite complicated, can be expressed as a more streamlined

matrix-vector equation with the unknown 6. The normal equations can then be rear-
ranged into the form

2'726=2"7.
Thus, if (Z"Z)~! exists, the minimizer is unique and is given by
0=(2'2)"'2"y.

A straightforward numerical computation using Python yields the approximate
matrices

[3 5660 381
Z'7Z ~ 5660 11229350 689280,
| 381 689280 50141
313.455 —0.075 —1.344
(z'Z2)"'~ |-0.075 0.000 0.000 |,
| —1.344 0.000 0.006
[991
Z'j ~ [1860500
| 128409

Therefore, we have that

0 =(2'2)7'2Tj ~

—2405.796
0.634 ,
12.129

47

so that the estimated intercept is b* ~ —2405.796, and the weight coefficients are
@(V* ~ 0.634 and ©?* ~ 12.129. Consequently, Rosabel’s multiple linear regres-
sion model takes the form

2(1
f (5*; lf]) ~ 0.634 ¥V +12.129 ¥?) — 2405.796.
X

We can verify the model’s predictions by computing matrix vector product Z 6,
which should hopefully be close to j. As it turns out, we get exactly that:

325
Z6* = |221
445

After exploring Rosabel’s example with feature dimension d = 2, we are now ready
to turn to the general case. We will use many of the same steps that we saw in Ex-
ample 2.3.1. Before we begin, let’s summarize a couple of the important points we just

encountered.

@ Design Vectors and Matrices

Suppose we have a collection of training data {(¥;,y;)}?., where ¥, € R? and y; € R
and wish to model y using a multiple linear regression model f(@, b; X) of the form

f(®,b; ¥) = @' X+ b.

An important preliminary step when setting up this problem is to construct design
vectors, which are the vectors 71,2, ...,%Z, € Rt obtained by adding a leading one

in the first entry:
n 1
Z; = AR
1

The design matrix Z & R (@+1) jg simply the matrix with rows given by
Z1,22,...,2y € R, That is,

le 1 x1T

Zy 1 X,
Z=|7"|=].

Z, 1 X,

Now we will state our main result concerning the optimal weights @*, b as a theorem
and prove it carefully.

o Theorem 2.3.2 Optimal Model Parameters for Multiple Linear Regression

Suppose we have a collection of training data {(¥;,y;)}", where ¥ € R and

48

y; € R and model y using a multiple linear regression model f (@, b; X) of the form
f(®,b; ¥) =@ ' X +b.

Let Z denote the design matrix associated to the training data and let ¥ € R”"
denote the vector of labels. Assume that (ZZ) ! exists. Then the parameters @* €
R? and b* € R which minimize the mean squared error (see Eq. (10)) associated to
the training data are unique and given by the formula

5| -@D

) Proof
For a single training example (¥,y), the square loss is given by
_ o 2
Leg(@, b3 (%)) = (y — (@ % +1))>

Thus, the empirical risk (or MSE) is then the mean loss over all 7 training examples:

Since R(w, b) is differentiable with respect to @ and b, we find its minimizer by set-
ting its partial derivatives equal to zero. We will use the shorthand 6 € R**! to cap-

. . ~ — — — T
ture all of the parameters in one vector by setting 6 = [b @) ©®? ... @@] .
First, differentiating with respect to b we obtain

n

3—12 -2 Z(%’ — (@' %+ b))

5
1 T 1 — ZlTQ
2 1 yz _ Z;g 2—»T . —
== == (7 - 28) (16)
1 Yn — Z;Fé’

Next, differentiating R (4, b) with respect to @) for some 1 < j < d fixed, we have

0wl i=1
, N T
=TI
2% |\we—-Ze| 2% . s
== | =—=|* (y—ze). (17)
| lym-Z8 zJ)

Therefore, for the same reasons as we saw in Example 2.3.1, we can re-write
Egs. (16) to (17) in the more compact form

— 2
VR(6) = —EzT (j— 280

-,

)

49

So the normal equations are given by
2" (§-726")=0 «— 2'26"=2"7.

Since we assumed that Z' Z is invertible, the equation (Z'Z)6* = Z' has a
unique solution given by

AR 1, T
9_{5)*}_(22) z'y.

To conclude this section we provide an example demonstrating how to implement a
multiple linear regression model in practice.

' Example 2.3.3

In economics, analysts often wish to forecast key indicators such as retail sales
based on several factors. Consider an economist Zihan who wants to predict
monthly retail sales (in billions USD) for a city using three features: average house-
hold income (in thousands), unemployment rate (in percent), and consumer confi-
dence index (scale 0-100). Zihan’s dataset below comprises 10 observations from
different cities.

meanincome | X0 | 50 | 60 | 55 | 65 | 48 | 70 | 52 | 68 | 58 | 63
unemploymentzate | £ | 5 | 4 | 6 | 3 | 7 [2] 6 | 3| 5] 4
consumer confidence index | £ | 80 | 85 | 75 | 90 | 70 | 95 | 78 | 88 | 80 | &2
retailsales | y; | 120 | 150 | 130 | 160 | 110 | 180 | 125 | 165 | 140 | 155

He decides to model the relationship using multiple linear regression with hypoth-
esis function:

f(®,b; ¥) =@ ' X+ b,
where ¥ € R? contains the three features and f(@, b; X) predicts sales. The empir-
ical risk, or mean squared error (MSE), is given by
1 1o

R(w,b) = 10 (yi — (@' X; —|—b)> :
i=1

To solve for the optimal parameters, we first construct the design matrix Z € R19*4
by appending a column of ones to the feature matrix. Then the solution to the
normal equations can be written in compact form as

o=@

The following Python code demonstrates how to compute the optimal parameters,
make predictions, and evaluate the model by comparing predicted targets with
actual targets and computing the MSE.

50

import numpy as np

Dataset: [Income, Unemployment, Confidence]

X_data = np.array([
[50, 5, 80],
[60, 4, 85],
[55, 6, 75],
[65, 3, 90],
(48, 7, 701,
(70, 2, 95],
[52, 6, 78],
(68, 3, 88],
[58, 5, 801,
[63, 4, 82]

D

Target: Retail Sales (in billions)
y = np.array([120, 150, 130, 160, 110, 180, 125, 165, 140, 155])

Number of data points
n = X_data.shape[0]

Construct design matrix by adding a column of ones
X = np.hstack((np.ones((n, 1)), X_data))

Compute optimal parameters using normal equations
theta = np.linalg.inv(X.T @ X) @ (X.T @ y)

b_opt = thetal[0]

w_opt = thetal[l:]

print("Optimal parameters:")
print ("Intercept (b):", b_opt)
print ("Weights (w):", w_opt)

Compute predictions
y_pred = X @ theta

Compute Mean Squared Error (MSE)
mse = np.mean((y - y_pred)**2)

print ("\nPredictions and Errors:")
for i in range(n):
print ("Input:", X_datal[i], "Actual:", yl[il],

"Predicted:", round(y_pred[i],2))
print ("\nMean Squared Error (MSE):", round(mse,2))

Running the code, Zihan obtains the following outputs.

Optimal parameters:

51

@ The reader is en-
couraged to attempt a
proof of this result on
their own.

Intercept (b): -64.77167424862273
Weights (w): [2.41276322 0.90903936 0.75418279]

Predictions and Errors:

Input: [60 5 80] Actual: 120 Predicted: 120.75
Input: [60 4 85] Actual: 150 Predicted: 147.74
Input: [65 6 75] Actual: 130 Predicted: 129.95
Input: [65 3 90] Actual: 160 Predicted: 162.66
Input: [48 7 70] Actual: 110 Predicted: 110.2
Input: [70 2 95] Actual: 180 Predicted: 177.59
Input: [62 6 78] Actual: 125 Predicted: 124.97
Input: [68 3 88] Actual: 165 Predicted: 168.39
Input: [68 5 80] Actual: 140 Predicted: 140.05
Input: [63 4 82] Actual: 155 Predicted: 152.71

Mean Squared Error (MSE): 3.54

2.4 The General Linear Model: Vector Features, Vector Targets

In this section, we bring all of the topics and techniques in this chapter to their
natural conclusion and wrap up our discussion of linear models. First and foremost, we
note that many real-world problems require us to predict not just a single target, but an
entire vector of targets. In Example 2.3.3, for instance, Zihan may very well have set out
to forecast multiple interrelated indicators simultaneously. For example, suppose Zihan
was interested in predicting both the total retail sales and the inflation rate for a city based
on its consumer confidence, unemployment rate, and average household income. In this
setting, the target is a vector y € RP (with p = 2 in our example) while the features
remain in RY (with d = 3). In this setting, Zihan might choose to use general linear
model instead of multiple regression; this model has the form

f(W,b; ¥) = WX+,

where W € RP*? is a weight matrix and b € RY is an intercept (or bias) vector. In this
setting, we are given a collection of vector-valued training examples of the form

{(fl/y)l)l (9_52;?2); ey (fn/?n)};

then the mean squared error can be defined in a similar manner as in earlier sections:
- = n 1 ! — — 7 2
R(W,b) = R(W,b; {(%;,) }ir) = —) IIF: — (Wi + D). (18)
i=1

The main result we wish to cover for this section is given as a theorem below. The
proof of this result requires some careful calculation along the lines of the proof of
Theorem 2.3.2, but is otherwise not fundamentally different. For this reason, we omit a
proof.

52

o Theorem 2.4.1 Optimal Model Parameters for General Linear Model

Suppose we have a collection of training data {(¥,#;)}", where ¥ € R? and
i € RP for each 1 < i < n; suppose we model i using a multivariate linear

regression model f(W, b; X) of the form
f(W,b; ¥) = WX+,

where W € R?*? and b € R”. Let Z € R"*(@+1) denote the design matrix associ-
ated to the training data and let

denote the matrix containing all target vectors. Assume that (Z"Z) ! exists. Then
the parameters W* € RP*? and b* € R? which minimize the mean squared error
for the training dataset (see Eq. (18)) are unique and are given by the formula

l ((E*)H =(Zz'2)7'2"Y.

) Example 2.4.2

Dr. Miranda is a cryptozoologist” and often encounters reports of unknown crea-
tures with varying characteristics. She is investigating sightings of a legendary
creature reputed to inhabit remote forests. She believes that certain environmental
factors may help predict two key attributes of the creature: its estimated length (in
meters) and its estimated weight (in kilograms). In her study, the three features
recorded for each sighting are: forest density (on a scale from 0 to 100), ambient
temperature (in °C), and altitude (in meters). The target is a two-dimensional vec-
tor consisting of the creature’s estimated length and weight. Dr. Miranda collects
a dataset of 8 sightings as shown below.

Forest density | 2 | 70 | 80 | 60 | 90 | 50 | 85 | 65 | 75
Temperature (°C) | > | 15 | 10 [20 | 12 | 25 | 18 | 22 | 16
Altitude (m) | ¥ | 200 | 150 | 250 | 180 | 300 | 220 | 280 | 210

Estimated length (m) | 71" | 25 | 3.0 | 20 [35] 1.8 | 32 | 22 | 238
Estimated weight (kg) | 71 | 150 | 170 | 140 | 190 | 130 | 180 | 150 | 160

Dr. Miranda opts to use the general linear model
f(W,b; ¥) = WX+,

where ¥ € R3, W € R?3, and b € R2. Her design matrix Z and target matrix Y

53

are given by

1 70 15 200] 25 150]

1 80 10 150 3.0 170

1 60 20 250 2.0 140
i 1 90 12 180 8x4 o 3.5 190 8§x?2
£=17 50 25 00l & - Y= |18 130 SR

1 85 18 220 32 180

1 65 22 280 22 150

1 75 16 210] 2.8 160

She uses the following Python code to perform the computation of the optimal
parameters, predictions, and MSE.

import numpy as np

Dataset: [Forest Density, Temperature, Altitude]
X_data = np.array([

[70, 15, 200],

[80, 10, 150],

[60, 20, 250],

[90, 12, 180],

[50, 25, 300],

[85, 18, 220],

[65, 22, 280],

[75, 16, 210]
D
Targets: [Estimated Length (m), Estimated Weight (kg)]
Y = np.array([

[2.5, 150],
[3.0, 170],
[2.0, 140],
[3.5, 190],
[1.8, 130],
[3.2, 180],
[2.2, 150],
[2.8, 160]

D
n = X_data.shape[0]

Construct design matrix by adding a column of ones
X = np.hstack((np.ones((n, 1)), X_data)) # X in R~(8x4)

Compute optimal parameters using normal equations
Theta = np.linalg.inv(X.T @ X) @ (X.T @ Y)

b_opt = Thetal[O, :]

W_opt = Theta[l:, :].T

print ("Optimal parameters:")

54

print ("Intercept (b):", b_opt)
print ("Weights (W):", W_opt)

Compute predictions
Y_pred = X @ Theta

Compute Mean Squared Error (MSE)
mse = np.mean(np.sum((Y - Y_pred)**2, axis=1))

print ("\nPredictions and Errors:")
for i in range(n):
print ("Input:", X_datal[i], "Actual:", Y[i],
"Predicted:", np.round(Y_pred[i],2))
print ("Mean Squared Error (MSE):", np.round(mse,2))

Running the code, Dr. Miranda obtains the following outputs:

Optimal parameters:
Intercept (b):
Weights (W): [[4.41942831e-02

[1.39221045e-02 -1.15818244e+00]
1.85514178e-01]]

[-1.52203621e-03

Predictions and Errors:

Input: [70 15 200] Actual: [2.5 150.] Predicted:
Input: [80 10 150] Actual: [3. 170.] Predicted:
Input: [60 20 250] Actual: [2. 140.] Predicted:
Input: [90 12 180] Actual: [3.5 190.] Predicted:
Input: [50 25 300] Actual: [1.8 130.] Predicted:
Input: [85 18 220] Actual: [3.2 180.] Predicted:
Input: [656 22 280] Actual: [2.2 150.] Predicted:
Input: [76 16 210] Actual: [2.8 160.] Predicted:

Mean Squared Error (MSE): 3.2

[-0.4510648

14.08040087]

1.71324451e+00]

[

L T e T e B e B |

2.55 153.74]
167.39]
140.09]

1
3.42
1.65
3.
2
2

22

.3
77

187.77]
126.44]
179.67]
151.91]
163.]

A scatterplot can help visualize the performance of the model. The plot below
shows, in the space of targets, the true target vectors (blue circles) and the pre-
dicted target vectors (red crosses) for each observation.

55

195 I I T T

® True Targets ’(.
185 | XPredicted Targets |
®
o 175 s
=
3 I x |
= o
2 155
T I X |
£ o* 4
M 145 | |
o X
135 :
12 x/. | | | |
51.5 2 2.5 3 3.5 4

Estimated Length (m)

In this example, the predicted target vectors closely match the true targets, as
reflected by the low MSE. Note that the MSE can be thought of as the average
squared distance between each pair consisting of a blue circle and red cross.

“From Wikipedia: “Cryptozoology is a pseudoscience and subculture that searches for and studies un-
known, legendary, or extinct animals whose present existence is disputed or unsubstantiated, particularly
those popular in folklore, such as Bigfoot, the Loch Ness Monster, Yeti, the chupacabra, the Jersey Devil, or
the Mokele-mbembe. Cryptozoologists refer to these entities as cryptids, a term coined by the subculture.”

2.5 Exercises

Exercise 2.1
Determine whether each statement is true or false. Explain briefly.

(a) If the training features x1, ..., x, for a simple linear regression problem have
mean zero then the intercept of the optimal linear model will equal zero.

(b) The line of best fit is found by minimizing the empirical risk.
(c) The slope of the line of best fit must always be positive.

(d) A simple linear regression model has exactly two parameters.

56

https://en.wikipedia.org/wiki/cryptozoology?variant=zh-cn

Exercise 2.2

Match each term (a)—(e) with its correct definition (1)—(5):

(@) Empirical risk | Equations obtained by setting partial derivatives (1)
of empirical risk to zero.

(b) Intercept | Average value of the loss function over the train- (2)
ing data.

(c) Square loss | Parameter indicating the amount that the pre- (3)
dicted value changes if the feature increases by
one unit.

(d) Normal equations | Parameter indicating the predicted value when (4)
the feature is zero.

(e) Slope | A loss function measuring the squared difference (5)
between prediction and actual value.

Exercise 2.3

A time traveler is interested in modeling the relationship between temporal dis-
placement (years traveled) and energy consumption (gigawatts). His observations
are given below.

Years traveled | 5 | 10 | 15 | 20 | 25
Energy consumed | 1.21 | 2.42 | 3.60 | 4.79 | 5.98

Using the empirical risk associated to the square loss, find the optimal linear re-
gression model predicting energy required for a given number of years traveled.
(You do not need to re-derive our formulas from scratch.)

Exercise 2.4

An alchemist measures gold created (in grams) against hours spent brewing
philosopher’s potions and obtains the following dataset.

Hours spentbrewing | 2 | 3 | 5 | 7 | 8 |11
Gold created | 0.5 [0.75 [1.2 | 1.7 [2.1 | 29

(a) Determine the slope and intercept of the linear model which minimizes mean
squared error.

(b) Predict the amount of gold the alchemist will create after 10 hours of brewing
philosopher’s potions.

Exercise 2.5

Write Python code to verify numerically the observation in Example 2.1.4 that
translating the features used to train a simple linear regression model by a constant
« affects only intercept but not slope. Use the following guidelines:

(i) Generate a synthetic dataset of points {(x;,y;)}"_; as follows. First, fix a,b €

57

R of your choice. Then, sample 100 random values x; in an interval [0, 10].
Finally, sample some labels y; by calculating y; = ax; + b + (noise;) where
(noise;) is a very small random number obtained however you like.

(ii) With your setup {(x;,y;)}" ;, calculate the optimal parameters a*,b* (which
should be slightly different from a,b due to the noise added).

(iii) Next, translate your features x; by a fixed constant « of your choice, and
repeat step (ii) — how do the values change?

Exercise 2.6

The four plots below contain a training dataset {(x;,y;)}3°, of thirty points in
the xy-plane (blue), along with the line of best fit for the associated simple linear
regression problem (red).

(a) For each plot below, determine whether the simple linear model is appropri-
ate. Write a short explanation of your reasoning.

(b) For each plot, consider the value R(a*, b*) of the empirical risk associated to
the optimal parameters and given training dataset. Rank the plots from least
to greatest value of R(a*,b*).

@) (ii)

200 - S 8
=N 0 : -. - . =
—201! - .) ..,
0 1‘0 2‘0
X

10 e]
=5 0»'. o
—10+t |
0 10 20
X X

Exercise 2.7

Consider a simple linear regression model f(a*,b*; x) = a*x + b* which has al-
ready been trained on data {(x;,y;)}"_ ;. Suppose we transform every feature x; by

58

a fixed scalar B € R. In other words, we obtain a new collection of features
xi = Bx;.

Assuming we do not change the labels y;, find formulas for the optimal parameters
a',b’ € R of the linear model which minimizes the empirical risk associated to the
square loss of the modified training data {(x/,y;)}" ;. Your formulas should be in
terms of a*, b*. (Follow in the footsteps of Example 2.1.4).

Exercise 2.8

In a study of daily ice cream sales, an analyst builds a simple linear regression
model to predict sales (in hundreds USD) based on the daily average temperature
measured in Celsius. The model is given by

fa*,b%; xc) = a*xc + b7,

where xc is the temperature in Celsius and the optimal parameters found are a*
and b*. Suppose the analyst decides to convert all temperature measurements from
Celsius to Fahrenheit using the transformation

xp = 1.8xc + 32.

Find formulas for the new optimal parameters a’ and b’ in terms of a*,b* for the
model when written in terms of temperature in Fahrenheit, that is, for the model

g(a,b'; xp) =a'xp+ V.

Exercise 2.9

Implement a Python function compute_optimal_params(x, y) that computes and
returns the optimal slope and intercept for a simple linear regression model using
the closed-form expressions in Theorem 2.1.2. Specifically, your function should:

(a) Validate that the inputs x and y are one-dimensional NumPy arrays of equal
length. If not, raise an error.

(b) Calculate and return the optimal slope and the optimal intercept using the
formulas in Theorem 2.1.2.

(c) Calculate and print the predicted values f(a*, b*; x;) for each training input.
(d) Calculate and print the value of the empirical risk for the trained model.

(e) Generate and show a scatter plot of the training data along with the regres-
sion line.

(f) In your notebook, include two examples from synthetic datasets.

Your solution should be packaged as a self-contained Jupyter notebook. Refer to
Example 2.3.3 and Example 2.4.2 for inspiration.

59

Exercise 2.10

Answer the following conceptual questions based on your understanding of the
material in Section 2.2.

(a) How can we geometrically interpret the empirical risk in the context of the
vector-valued constant model?

(b) Intuitively speaking why does it make sense for the mean of the training data
to minimize the squared loss?

(c) True or False: The gradient of the empirical risk function is independent of
the parameter vector .

Exercise 2.11

Suppose {X1,X,...,X,} is a dataset of vectors in R2. Let X denote their mean,
which minimizes the MSE of the constant model f(w; ¥) = @. Let

2

Suppose we transform the data using A, writing

(a) Find a formula for the new minimizer of the MSE for the constant model
associated with the dataset {¥X7,X},...,X)}.

(b) Let « denote the minimal value of the MSE associated with the original data.
Find a formula for a/, the minimal MSE of the constant model trained from
the dataset {X,X),..., X, }, in terms of .

Exercise 2.12

Suppose {X1,X>,...,%,} is a dataset of vectors in R2. For the vector-valued con-
stant model f(@; ¥) = @ with parameter @ € R?, define the absolute loss

Laps(@, %) = [@) — xV| + |3? — 2. (19)

(a) Write the empirical risk of the absolute loss associated with the training data
{¥1,%2,...,%,} as a sum of two functions Ry and Ry, such that R; depends
only on the first coordinates of the training data and parameter vector, and
such that R, depends only on the second.

(b) Use Theorem 1.2.3 to prove that the minimizer of the empirical risk of the
absolute loss is given by

)
. median{¥,"’, X, /,..., X
& = gy jz){ . (20)

. — 2 —
med1an{x§ WX yeos g Xgi

60

(c) Finally, using parts (a)-(b), explain how the loss function in Eq. (19) and the
formula in Eq. (20) can be generalized to training data drawn from R

Exercise 2.13

Consider a multiple linear regression model trained on data {(X;,y;) }?_; with fea-
tures ¥; € R?. Decide whether the following statements are true or false. Provide
a brief explanation for your answer.

(a) After scaling all features X; by a nonzero constant, both the optimal weight
vector and the intercept will be scaled by the same constant.

(b) In multiple linear regression, the target variable is always a scalar.

(c) The intercept b is the predicted target when all feature components are zero.

(d) If the optimal parameter vector @* satisfies |(@*)M)| > |(@*)?)|, then the
model f(@*, b*; X) will be more sensitive to changes in the first feature coor-
dinate than the second.

(e) The model f (@, b; X) contains d parameters.

(f) The mean-squared error of f(@*,b*; X) with respect to the optimal parame-
ters w*, b* is equal to zero.

(g) The minimum mean-squared error of f(@*,b*; X) can only decrease with the
addition of new training examples.

(h) The columns of the design matrix Z contain the training feature vectors ¥;.

Exercise 2.14

A chemist is analyzing how the yield of a chemical reaction (in grams) depends on
three variables: concentration of the reactant (in mol/L), reaction time (in minutes),
and catalyst amount (in mg). Her dataset is given below:

U9os|10]09]12]07|11]085]1.05
Reaction Time (min) 30 | 35 |32 |40 | 28|37 | 31 36
Catalyst Amt. (mg) | ¥> | 5 | 6 |55] 7 [45|65] 52 | 6.1

Yield (g) | y; | 50 | 65 | 60 | 80 | 45 | 70 | 55 | 68

Concentration (mol/L) | ¥
X

(a) Calculate the parameters @* € R3,b* € R which minimize the MSE for the
multiple linear regression model f(@,b; X¥) = @' ¥ + b.

(b) Find the MSE associated to the optimal parameters and the chemist’s dataset.

(c) Would you recommend using this model to the chemist? Why or why not?

61

Exercise 2.15

A materials scientist is studying how the strength of a composite material (in MPa)
depends on three variables: fiber volume fraction (in percentage), curing time (in
hours), and temperature during curing (in °C). His dataset is:

Fiber Volume (%) | ¥V | 45 | 50 | 48 | 55 | 47 | 52 | 49 | 53
Curing Time (h) | | 3 | 4 |35] 5 | 3 | 453842
Temperature (°C) | ¥ | 120 | 115 | 118 | 110 | 122 | 117 | 119 | 113
Strength (MPa) | y; | 150 | 160 | 155 | 170 | 148 | 165 | 152 | 168

(a) Calculate the parameters @w* € R3,b* € R which minimize the MSE for the
multiple linear regression model f(@,b; ¥) = @' X + b.

(b) Find the MSE associated to the optimal parameters and the scientist’s dataset.

(c) Would you recommend using this model to the scientist? Why or why not?

Exercise 2.16
Let A € RP*7 be any given matrix.
(a) Prove that ker(A) = ker(A T A) as follows.

(i) If x € ker(A), then x € ker(ATA).
(ii) If x € ker(ATA), then x € ker(A).

(b) Use the rank-nullity theorem (see Theorem B.4) and (a) to show that
rank(A) = rank(ATA).

(c) Consider a multiple linear regression model trained on data {(¥;,y;)}"_ ;. Us-
ing (a) and (b), show that if the design matrix Z & R"*(@+1) has full column
rank, then the normal equations Z'Z 6 = Z "y have a unique solution for the
parameters 6.

Exercise 2.17

Raymondo and Gena are data scientists working on a multiple linear regression
model to predict housing prices (in thousands USD) based on three features:

() size (ft?),
(ii) age of the house (years),
(iii) number of bathrooms.

Their training data contain n = 50 observations. Suppose they standardize each

62

feature vector ¥; € R3 to

Raymondo claims the transformation will not change the model’s accuracy after
refitting, because it is invertible and can be “undone.” Gena argues that refitting
on the standardized features will change the predictions and make them more
reliable.

(a) Let @*, b* be the optimal parameters obtained before standardization, and let
@ ,b* be those obtained after standardization. Derive closed-form expres-
sions relating (z%*,@*) to (@*,b), ¥ and ¢. (Hint: use the normal equation
Z'76* = Z" and the fact that Z = 0 1Z — 0_11§T.)

(b) Using (a) prove that the optimal MSE is invariant under standardization and
refitting.

(c) After standardization, each coefficient @) measures the expected change in
the target variable for a 1-standard-deviation increase in the feature. Explain
how this can help compare the relative importance of heterogeneous features
such as ‘size” and ‘age.’

(d) Based on your explanation in parts (a) and (b), decide whether Raymondo or
Gena is correct. Provide a detailed justification for your answer.

Exercise 2.18

Let {(%,y:)}", be a dataset with features ¥; € R?. Suppose we wish to use the
intercept-free multiple linear regression model:

f(w;) = ' %

(a) Write an expression for the empirical risk R(@0) associated to the square loss
of the model and corresponding dataset.

(b) Compute the gradient VR (@) with respect to @ by differentiating R(@0) with
respect to each component of @. Follow steps we used earlier in Exam-
ple 2.3.1 and the proof of Theorem 2.3.2, with careful attention to how this
scenario differs from before.

(c) Set the gradient equal to the zero vector and derive the resulting normal
equations in matrix form. (Hint: Let U € R"*? be the matrix whose ith row
is X| and 77 € R" be the vector of targets — this resembles the design matrix
but has a key difference.)

63

(d) Assuming that U'U is invertible, solve the normal equations to obtain the
closed-form solution for @w*.

Exercise 2.19

Consider a multiple linear regression model with two features and no intercept:

f@; %) =@z =a 2V + 5 32,

L(@; (%,y)) = ‘y — @D V) 4 3O 55(2))) .

Assume that the training dataset is specially structured so that each observation
has only one nonzero feature. That is, the dataset has the format

(1) =(1) =(1)
{ ([x]o] ,y1> I ([x%)] ,yz) A <[x61] ,yn1> ’
0 0 0
3_(:’(2)_’_1 ’ yn1+l ’ Q_C»(Z)+2 Y42 | ooy E(Z)—’_ s Yni+ny }
ny nq ni-+nyp

with total observations n = nq + n».

(@) Show that under these assumptions the empirical risk can be written in the

form
R(®) = - i i —zﬁ“)f.(l)’ + ”f” yi — @ f.@)‘
n |57 : =41 1 l

(b) Use Theorem 1.2.3 to prove that the minimizer for each coordinate is given

by

1

median{%:i:n1+1,...,n1+n2}

i

zﬁ*)(l)] median{%:izl,...,nl}
ZY’) pu—

(c) Discuss why in the general case (when each observation has nonzero entries
in both features) a closed-form solution for the optimal parameters using
absolute loss is difficult to obtain, and explain how the solution (if it exists)
might differ from the square loss solution.

Exercise 2.20

Implement a Python function plot_mlr_results(x, y) that solves the multiple
linear regression problem for its inputs. Your function should:

64

(a) Validate that the input arrays x and y are compatible shapes. If not, raise an
error.

(b) Calculate and return the optimal parameters using the formulas in Theo-
rem 2.3.2. If Z ' Z is not invertible, raise an error.

(c) Print a table listing each input vector, the actual target, and the predicted
target.

(d) Generate and show a scatter plot of actual versus predicted targets with
proper labels and a legend.

(e) In your notebook, include two examples from synthetic datasets.

Your solution should be packaged as a self-contained Jupyter notebook. Refer to
Example 2.3.3 and Example 2.4.2 for inspiration.

Exercise 2.21

A senior financial analyst at a major investment firm is developing a predictive
model to estimate two key characteristics of stocks: the expected annual return (in
%) and the annualized volatility (in %). To capture various financial aspects of the
companies, the analyst selects four features, measured over the previous calendar
year:

P/E Ratio: The price-to-earnings ratio.

Dividend Yield (%): The annual dividend expressed as a percentage of the
stock price.

Debt-to-Equity Ratio: A measure of the company’s financial leverage.
* Beta: The stock’s volatility relative to the market.

She proposes to use a general linear model of the form

f(W,b; ¥) = WX+,

where ¥ € R, and with parameters W € R?** and b € R2. The target vector is
comprised of the expected annual return and volatility. The analyst collects data
for 8 different stocks, summarized in the table below.

P/ERatio | #" | 15 | 18 | 20 | 16 | 22 | 19 | 17 | 21
Dividend Yield (%) | #? | 20 | 25 | 30 | 22 | 28 | 26 | 23 | 3.0
Debt-to-Equity | ¥ | 0.50 | 0.70 | 0.40 | 0.60 | 0.80 | 0.55 | 0.65 | 0.75
Beta | 7 | 1.10 | 0.90 | 1.20 | 1.00 | 1.30 | 1.15 | 0.95 | 1.25

Expected Return (%) | 7" | 8.0 | 9.0 [100] 85 [11.0] 95 | 88 | 102
Volatility (%) | 712 | 50 | 55 | 60 | 52 | 63 | 58 | 51 | 60

(a) Find the design matrix Z € R®*® and the target matrix Y € R¥*? from the
data provided.

65

(b) Use Theorem 2.4.1 and a short Python calculation to find the weight matrix
W* and bias vector b* which minimise MSE for the general linear model.

(c) Calculate the predicted target vectors for each stock and compute the overall
MSE between the actual targets and the predictions.

(d) Use Matplotlib to draw a scatter plot of the predicted vs. actual targets.

(e) The analyst collects data from two new stocks, and reports her findings be-

low.
P/E Ratio | !V | 17 | 21
Dividend Yield (%) | 7 | 2.1 | 24
Debt-to-Equity | ¥ | 0.49 | 0.73
Beta | ¥ | 1.14 | 0.88
Expected Return (%) }751) 8.1 | 8.5
Volatility (%) | 7% | 85 | 7.1

Use your previously trained model, find the predicted values for expected
return and volatility for the new stocks. How well does the model hold up?
Decide if you will recommend the model to the analyst.

Exercise 2.22

(a) Use Theorem 2.4.1 with d = p = 1 to write a short proof of Theorem 2.1.2.

(b) Use Theorem 2.4.1 with p = 1 to write a short proof of Theorem 2.3.2.

Exercise 2.23

Let X,/ € R" be non-zero vectors. Recall Theorem B.2(3) that
1%||2 = V&T% > 0.

Define

=

<

= —

(a) Expand Z'Z to obtain an expression involving ¥ 7.

=
=l

(b) Rearrange your expression to deduce the Cauchy-Schwarz inequality.

(c) Identify precisely when equality holds in the inequality above and interpret
this geometrically. Make sure to review Theorem B.2.

66

Exercise 2.24

Consider the exponential decay model
f(a,b; x) = o

with scalar-valued parameters 4, b and scalar input-output pairs (x,y). We use the
square loss function:

2
Loq(@,b; (x,y)) = (y — ae™™)".
(a) Clearly state the empirical risk R(a,b) associated with the dataset
{(xi,yi) Yy

(b) Compute the partial derivatives of R(a,b) with respect to the parameters a
and b, and simplify your expressions.

(c) Show that the normal equations are given by

" n
Z b (%’ _ ae—bxi> =0, and Z xille_bxi (yi — ae—bxi) = 0.
= i=1

(d) Isolate the parameter a explicitly in terms of b and the training data. You
should obtain a closed-form expression for a.

(e) Substitute your expression for a from part (d) back into the equation involv-
ing b, and simplify as much as possible. Then clearly state that the optimal
parameters a*,b* are given by:

n ,—b*x;

x _ 2i—1Yi€ '
o n —2b*x; 7
i=1¢€ !

where b* satisfies the implicit equation:

n
ine_b . (yi —ate? x’) = 0.

i=1

Can you find b* explicitly? What are some ways you could find b* numeri-
cally?

(f) Show that the determinant of the Hessian matrix of R(a, b) is given by

n n n 2
det(H) = % [(Z e_bei) (Z azx?e_bei> - <Zaxie—2bxi> :|)
=i i=1 i=1

Then, using the Cauchy-Schwarz inequality, show that det(H) will be posi-
tive as long as the values {x;}”_; are not all identical.

67

3 Moreon Modeling

What theory of markets—other than barefoot empiricism—specifies such a model?
Higher powers...make no substantive sense... What then can the regression coefficient
on £ mean: “A 100,000,000 quintic-year change in artist age explains a 85 change in
log, prices?!”

- Edward Tufte

So far we have covered the general framework of the modeling method in some detail,
with particular emphasis on the linear model as a useful proving ground for the method
and its related concepts. This chapter will hone in on a few different ways in which
we can push these tools and theoretical concepts even further. Section 3.1 will explore
basic nonlinear extensions of the linear models we have already seen, and show how
the MLR pipeline can be extended to these settings. Section 3.2 will introduce convexity
as a powerful tool for understanding the existence of minimizers, as well as the natural
follow-up of gradient descent, which is a powerful tool for finding them. In Section 3.3
we will use creative risk functions to improve our catalog of modeling tools and, ideally,
help reduce their failure points. At the end of this chapter, the reader will be ready to
take on a variety of data science challenges.

3.1 Polynomial Regression and Interactions

In Chapter 2 we learned that for a training dataset of scalar-valued input-output pairs
{(xi, i)}, the simple linear regression model

f(a*,b*; x) =a*x+b*

- _ i (x5i=X)(yi—y)
Y (x—x)2 7
b —J—0a'%

is the unique minimizer of the mean squared error provided the x;’s are not all identical.
There are many examples we explored in which this model is relatively performant:
predicting vehicle fuel economy as a function of horsepower, predicting sales revenue as
a function of advertising investment, and so on. In many real-world situations, however,
the relationship between input and output variables is significantly more nuanced. Fig. 2
illustrates a simple scenario where this is apparent: even data with a slightly nonlinear
underlying trend can lead to complete failure of a simple linear model.

Underfitting refers to the situation where a model is too rigid to capture the salient
structure in the data. This can often be seen when the error values for training and test
data remain comparatively high when the model is situated alongside models with more
trainable parameters. There are many conceivable ways to address this shortcoming of
the linear model and perhaps the most obvious is to incorporate more diversity into our
toolkit of models to include nonlinear ones as well; this has already been explored to

68

(a) Low MSE, good fit (b) High MSE, poor fit

Figure 2: A side-by-side comparison of datasets for which the simple linear model is (a)
appropriate and (b) clearly inappropriate.

some extent in Chapter 1 as well as the exercises at the end of Chapter 2. The good news
is that in this setting, we can retool much of the pipeline of multiple linear regression to
work for highly nonlinear models without a drastic investment in overhead.

The entry point to these methods is polynomial regression, which refers to designing
and training predictive models whose formulas are given by polynomials in the input
features. In essence, the idea is that where a linear model might fail to capture a reliable
picture of the underlying data, by allowing quadratic, cubic, or even quartic terms, one
can then start to build more robust and reliable models. This is illustrated in Fig. 3.

(a) Bad fit (b) Bending the line of best fit

Figure 3: An illustration of “bending the curve” in order to achieve a more performant
model.

To this end, the simple polynomial regression model with degree d > 1 is given by
the model formula

-

(0 x) =600 +6Wx 4 §2x? 4 4§Dy, (21)

Note: in this book we have “reserved” the letter d for the feature dimension of the
data. In this setting we are being slightly abusive in also using it for the degree of the
polynomial model, however, we hope this causes minimal confusion since this formula
should look somewhat familiar: if we define the polynomial feature vector of x by the

69

formula

then Eq. (21) takes the form

(6 x) =87 [x].
Therefore, using the familiar mean-squared error:

1i T2, (22)

3

all of our hard work from Chapter 2 pays off and we can essentially recast the task of
minimizing R(6) as instead minimizing mean squared error of a multiple linear regres-

sion model in the features [9?1] For this purpose, for a dataset of scalar-valued input-
output pairs {(x;,y;)}I_; we define the transformed design matrix by the formula

[561]1 1 x; xi xi
721 e I L S)
EAN 1 x, x2 x4

With this setup, we have the following result.

) Theorem 3.1.1 Optimal Model Parameters for Simple Polynomial Regres-
sion

Suppose we have a collection of training data {(x;,y;)}" 1 where x;,y; € R and
model y using a simple polynomial regression model f (6; x) of the form

— =

f(§, X) = 00 + Wy 4 @32 4+ 4@y = GT[x].

Let [Z] denote the polynomial design matrix associated to the training data and
let f € R" denote the vector of labels. Assume that ([Z][Z])~! exists. Then
the parameters 0* € R4 which minimize the mean squared error (see Eq. (22))
associated to the training data are unique and given by the formula

So far so good, right? However, there is a catch— our setup assumes and uses the
invertibility of [Z]"[Z] freely and although we have some intuition for when this is a
feasible ask in the linear setting, it is not immediately clear when, if at all, we can expect
this matrix to behave well in the nonlinear setting.

70

o Theorem 3.1.2

Suppose we have a collection of training data {(x;,y;)} ; where x;,y; € R. Then

the polynomial design matrix has the property that ([Z] " [Z]) ! exists if and only
if n > d + 1 and there are at least d + 1 distinct input training features.

J Proof

This proof consists of two steps. First, assuming that ([Z] ' [Z]) ~! exists, by Exercise
2.16, it must hold that rank([Z] T [Z]) = rank([Z]) = d + 1 and therefore that n >
d + 1, since the rank of a matrix must never exceed either the number of its rows or
columns. Similarly, if the set {x;} contained less than or equal to d distinct entries,
then among its n rows there would be a sufficient amount of repetition to force
rank(([Z])) < d. But this would imply that rank(([Z])) < d is not full rank and
that [Z] " [Z] is noninvertible, a contradiction.

The second step starts by assuming on the other hand that n > d + 1 and there
are at least d + 1 distinct input training features. Assume for contradiction that
[Z]"[Z] is noninvertible. Then, once again by Exercise 2.16, there must exist a
nonzero vector ¢ € R+1), & - 0 such that [Z]¢ = 0. Define the polynomial

p(t) =c® 4+ e 4 e@2 4 4 @Dy,

The condition [Z]¢ = 0, when expanded, asserts that

d+1 N
Z[Z](Z'J)E(]) =0, foreachi=1,...,n.
=1

But based on the construction of the polynomial design matrix, this means
d+1 () i
Y %) =0 <= p(x;) =0,
=il

i.e., that the polynomial p(t) has a root at each point t = x;. By assumption, there
are at least d + 1 distinct entries x;, and thus p(t) has at least d + 1 zeros. The only
polynomial of degree d with at least d + 1 zeros is the constant zero polynomial.
This implies that

A = g =B G

a contradiction. Therefore ([Z]"[Z])~! must exist.

It is perhaps worth mentioning that the matrix [Z] is an example of a Vandermonde
matrix, for which many interesting mathematical problems have been studied.
In many applications, particularly when there is even a small amount of noise in

the feature space, distinct x; is typically a weak assumption. In this case it is natural to
wonder: if a closed-form solution exists to the simple polynomial regression problem for
any d < n — 1, why not simply choose the highest degree possible, and in turn the most

71

flexible model we could possibly use? Such a modeling choice would greatly run the
risk of overfitting, which occurs when a model is so flexible that it begins to memorize
the noise peculiar to the training set. Moreover, small perturbations in the sample, or
even random experimental noise, can lead to large swings in the learned parameters of
the resulting model. Training error can plunge toward zero, but the test error, where
applicable, typically rises. We can demonstrate this a numerical example below.

) Example 3.1.3

In this synthetic example, consider the function
y = 16 — 35x + 28x% — 9x° + x*.

Suppose we sample fifty points {(x;,y;)}?°; as follows: pick x; uniformly at ran-
dom from the interval [0,4], and then pick y; = 16 — 35x; + 28x7 — 9x? + x} + ¢;
where €; is a number sampled uniformly at random from [—1,1].

\ Xi \ Yi
3.095 | 0.220
1.755 | 0.668

N =] ~.

50| 0.559 | 4.634

We can then fit several simple polynomial regression models to our data; in the il-

lustrations below we show a scatterplot of the dataset alongside the corresponding
curves of best fit for d = 2,4, 8:

(a)d =2, MSE ~ 1.77 (b) d = 4, MSE ~ .238 (c)d = 8, MSE ~ .229

We observe that the optimal mean-squared error is decreasing monotonically as
we increase the model complexity. In fact, this trend more or less holds:

/M
wn
=
50 .
= 0 | |
§ 10 \
S \
= \
g * o o o o o .
B —e —9o—9o—90o—0o o
Q,
O 1071 | | |
1 5 10 15

Polynomial degree d

72

Despite a diminishing return as d gets above five or six, in theory, we could con-
tinue to see improvements until the optimal MSE reaches zero for d = 49 at which
point the curve of best fit would perfectly interpolate each of the points. All of
this sounds great, but here’s where the tide turns: if we sample 25 new pairs
{(xtest, ytest) 12 from the same data model as before and compute the MSE against
the pre-trained models, we find that performance on these data is significantly
worse:

Test MSE
—_
<

—_
=
A
—_
[=

10 15
Polynomial degree d

This demonstrates the impact of overfitting, as well as the role of train-test data
splits in mitigating the risk. By comparing these plots, d = 4 emerges as a likely
candidate for a useful model; and indeed, as we saw at the beginning, this is
correct.

We mention as well that Eq. (21) and Theorem 3.1.1 extend naturally to settings where
polynomial terms x' are replaced by linearly independent functions; for example, one
could consider the model formula

F(B x) =00 4 6o 4 §@e 2 4 4 g, (23)

or any suitably rich mixture of functions that are relevant to a given modeling scenario.
This essentially only leads to a change in the setup of the design matrix, a modification
which we will explore in the exercises. Simple polynomial regression, as well as the
more exotic example in Eq. (23) are instances of models that are linear in the data after
applying a data transformation.

Finally we consider how this setup affects the multivariate setting by returning to
multiple linear regression. Suppose we have a training dataset of vector-valued input
features and scalar-valued targets { (X, y;) }/.;. When the response depends not only on
individual features but also on their joint effects, we can extend the standard multiple
linear regression model to include what are known as interaction terms, which are
weighted products of various features. For example, a multiple linear regression model
with d = 2 and a single interaction term might look like

f(@,0,b; %) =@Mz £ 3@z 1 oxVz@ +p, TR 0beR

In this case f(@, v, b; X) contains four parameters and scales quadratically on the input
data. Some examples where interaction terms might be useful in expanding a model’s
robustness include: modeling drug outcomes (e.g., concentration of bacteria) as a func-
tion which is not only linear in the dosage amount of Drug A and Drug B, but also their
product; or modeling the amount of plant growth in a biology experiment as a function
of the amount of water and fertilizer a plant receives as well as their product. Note, how-
ever, that introducing unnecessary interaction terms without proper domain knowledge
or theoretical justification can lead to the same overfitting problems as before.

73

To minimize the MSE of a multiple linear regression model with respect to a given
dataset, we can apply the same procedures we have seen in this section so far.

' Theorem 3.1.4 Optimal Model Parameters for MLR with Interaction

Suppose we have a collection of training data {(¥;,y;)}", where ¥ € R and
yi € R.Let I = {(i1,/1),.-,(im, jm)} be a collection of m > 1 pairs of indices with
it # jy for t = 1,...,m. Suppose we model y using a multiple linear regression
model f(@, 7, b; X) containing interaction terms from I of the form

m
f(@,5,b;) =@ ¥ + 25%) 4b.

Let [Z] denote the interaction design matrix given by

g g
1z] = e U - i ¢ Rix (Lrdtm)
1 3—5’(11) f,ﬁd) fy(lil)f;gjl) f;(qi’n)fgzjm)

and let i € R” denote the vector of labels. Assume that ([Z] T[Z]) ! exists. Then
the parameters w* € RY, 7* € R™, and b* € R which minimize the mean squared
error associated to the training data are unique and given by the formula

b*
@ | = ([z]'[z])

%

(Y

21"y

) Example 3.1.5

An NBA analyst argues that a player’s scoring output (measured in points per
game, denoted PPG) depends not only on the features minutes per game (MPG),
usage rate (USG, which measures the percentage of team plays a player uses while
on the court), and three-point attempts per game (3PA); but also on an interac-
tion term between MPG and USG. The analyst collects the following data for ten
players, averaged over several games in the current season:

Player [MPG USG 3PA MPGxUSG | PPG
i | P @ ® #xP | g,
1 3 30 7 1020 | 27
2 28 22 4 616 18
3 5 18 1 270 | 6
4 25 27 6 675 | 20
5 32 25 3 800 | 24
6 18 14 2 252 | 8
7 30 21 5 630 | 19
8 2 20 1 240 | 5
9 20 17 3 340 | 10
10 3B 29 8 1015 | 29

74

With d = 3 features, one interaction term, and an intercept, the analyst fits the
model

B . TS (1) (2
f(@,v,b; X) = wa—i—vxf)xZ()+b.

The interaction design matrix and label vector are given by

1 34 30 7 1020] 27]
1 28 22 4 616 18
115 18 1 270 6
1 25 27 6 675 20
z]= |1 32 25 3 800 e 2
1 18 14 2 252 |’ 8
1 30 21 5 630 19
1 12 20 1 240 5
1 20 17 3 340 10
1 35 29 8 1015 29

After some Python computations guided by Theorem 3.1.4, the final model is
trained and given by

£(@,0,b; %) ~ 0.594%V) + 0.304%? 4 0.1547® + 0.007z1 7> —9.97.

3.2 Convexity & Gradient Descent

Our modeling journey thus far has exposed us to a variety of model formulas, loss
and risk functions, and applications thereof. However a key feature of the material
presented up to this point has been the existence of closed-form analytical solutions to
the corresponding risk minimization problems. In practice, this is often a lot to ask for:
in most real use cases, the optimal solutions to the risk minimization problems are both
impossible to represent using pen-and-paper linear algebra-based formulas as well as
elusive to find using brute force numerical methods (e.g., grid searches). With that in
mind, the focus of this section is two powerful tools which allow us to guarantee the
existence of risk function minimizers and find them in practice.

Our first topic is convexity. We begin with some definitions. First, recall that a
collection of points C C R” is said to be a convex set provided that for each ¥,ij € C,
the straight line segment between them is also contained in C; in other words, we have

AX 4+ (1 —A)yj € C,for each A € [0,1].

This definition should have a familiar tone, particularly in the context of grade school
geometry and the notions of convex and non-convex polygons (see Fig. 4).
Consider next a function f : R” — IR. We say that f is a convex function if its epi-

graph (the set of points on and above its graph) {(6,t) | f(6) < t} C R"*! is a convex
set. Equivalently, f is a convex function if for each 01,0, € R" and A € [0,1] it holds that

F((L=2)81 +A62) < (1—A)f(61) + Af(62).

75

Convex set Non-convex set

Figure 4: Examples of a convex set (left) and a non-convex set (right) in R?.

We say that f is a strictly convex function if the inequality above is strict except at the
endpoints:

FIA=1)8+162) < (1=A)f(61) +Af(82), Ae(0,1).

These notions are illustrated in Fig. 5.

Nonconvex Convex but not strictly Strictly convex

f(x) flx f(x)

Epigraph

Figure 5: Examples of nonconvex (left, f(x) = sin(x)), convex but not strictly convex
(center, f(x) = |x|), and strictly convex (right, f(x) = x?) functions on R.

As one can start to imagine based on the illustrations provided, convex functions
have strong properties when it comes to minimizers.
J Theorem 3.2.1 Minimizers of convex functions

Let f : R" — R be a convex function. Then:

(1) If 0* € R" is a local minimizer of f, it must also be a global minimizer of f.
(ii) The set of global minimizers
M = {5 € R" : § is a minimizer of f}
is a convex subset of IR".

(iii) If f is also strictly convex, then there is at most one global minimizer (i.e.,
any minimizer is unique if it exists).

(iv) Lastly, if f is also differentiable on IR"” and 9_1, 0, € R", it holds that
f(62) — f(61) > VF(61)" (62—).

76

Moreover,

—

Vi*) =0 < 6* e M.

) Proof

For statement (i), suppose for the purposes of contradiction that 6* € R” is a local
minimizer but not global. Then there exists i/ € IR” such that

f(@) < f(6%).

Consider the line segment {(1 — A)6* + A7 : A € [0,1]}. Since f is assumed mini-
mal in a neighborhood of %, i.e. at the point on the line segment for A = 0, it must
hold that for sufficiently small A > 0,

FIL=A)8* + A7) > £(8").

On the other hand, convexity also gives

FU(L =16 + A7) < (1= A)f(6*) + Af(7)
< (L=A)f(8%) + Af(6*) = f(6%).

which is a contradiction. For statement (ii), let 9}, 9} be two global minimizers, so
£(61) = f(6;) = m = min f. Then for any A € [0,1], by convexity of f, it holds that

F(A=2)01+18) < (1—A)f(61) + Af(62) = m.

6*
6*

But m is the global minimum, so equality holds and (1 — A)0; + A6, is also a
minimizer. Therefore the minimizer set is convex. For statement (iii), if f is strictly
convex and had two distinct minimizers 6; # 6,, then for any A € (0,1)

m= f((1=A)01 +A8,) < (1=A)f(61) +Af(B2) = m,

contradicting minimality. Hence at most one minimizer exists. Finally, for state-
ment (iv), let 61,6, € R" be fixed, and consider the univariate function

P(A) = f((1— M0 +AB), Ae[01].

Since f is convex on R”, it follows that A — (1 — A)0; + A is affine, ¢ is also
convex and differentiable on [0, 1]. In particular, for any ¢ € [0, 1] it holds that

¢((1=1)(0) +tA) < (1 - 1)$(0) + tp(A)
This implies that

t—0+ t

< ¢(A) —¢(0)

Next, noting that

it holds that

— — —

f(62) — f(61) > Vf(61) (6, —67).

—

Therefore, if 6* € R" satisfies V £(6*) =0 and € R" is any other point, we have
f(6) = f(6*) > 0T(6* —8) =0 < f(9") < f(6)

which implies 6* € M.

These properties illustrate why convexity is so useful for data scientists. In particular,
there are essentially no distinctions between local minimizers and global minimizers
once they have been found; so, for example, if an algorithm is designed only to find
local minima, in this case it is also discovering global minima, in which we are most
often interested.

To verify that a function is convex, there are many avenues to take. One example
is the second derivative test, which we will explore further in the exercises. We will
conclude this portion of the section by showing that two of our most used risk functions
are in fact convex, and in some cases strictly so.

) Example 3.2.2

Suppose we have a training dataset of vector-valued input features and scalar-
valued targets {(X;,y;)}?_; (we assume the targets are scalar-valued only for sim-

plicity; this example extends to the vector-valued case easily). Suppose that f(6; ¥)
is a given model , where § € R is a parameter vector of arbitrary length. We as-

sume f is affine in 6 (such as a simple linear model, multiple regression model, or
any instance where f is linear in 6 after possibly applying a transformation to x).
Recall the mean-squared error

—

L1 .
Ry(®) =Y lyi~ f@ DI
i=1
Then qu(g) is convex. To see this, fori = 1, ..., n define the residual
— — - i -
ri(0) =yi— f(6; %), Rsq(8) =) 7i(6)>
i=1

Since f (5, X;) is affine in g, for any two parameter vectors 93, 0, and any A € [0,1]
we have

ri(ABy 4+ (1= A)6a) = Ari(61) + (1 — A) r;(6a).

Hence since x — x2 is convex on R,

78

Summing over i = 1,...,n and dividing by n gives
Reg(Afy + (1= A)B2) < ARy(61) + (1 —A) Ryg(62),

which is exactly the definition of convexity for Rs;. Therefore R, is convex in 0.
The exact same argument works for showing that the mean absolute error

—,]_ 12 =
Raps(0) = = Y lyi — f(6; %)
i=1
is also convex; and, for that matter, so is the empirical risk associated to any p loss.

So far, we have set the stage by explaining that a certain class of functions make for
good risk functions since their minimizers are all around great once they have been found.
But how do we find them? For the remainder of this section we will focus on such a
technique, which is called the gradient descent algorithm. This is an iterative method
which allows one to track down minimizers based on an initial guess and information
about the behavior of the function nearby. Before defining the algorithm itself, let’s start
by reviewing a result from multivariable calculus which is essential for understanding
why this method works so well.

J Theorem 3.2.3

Let f : R” — R be a differentiable function and let §y € R" be a fixed vector. Then
the direction along which f increases most rapidly is Vf(fy) and the direction
along which f decreases most rapidly is —V f(6p).

J Proof

Let §p € R” be given and suppose i € R” is any unit vector, ||iZ]| = 1. The
directional derivative of f at 6y in the direction i is given by

D £ (@) = lim @+t ~f(0)

t—0+ t

= (Vf(60)) .
By the Cauchy-Schwarz inequality,
(V£(80)) "l < IVF(@)Il llll = V£ ()l

Equality holds precisely when i points in the same direction as V f(6p), i.e. il =

—Hgﬁz_‘?;". Thus f increases most rapidly in the direction V f (50) Similarly, by

0

replacing # with —if one sees that the minimum directional derivative is attained
=~ _ V(%)

when = 15 f@)

The basic idea here is that if you are trying to minimize a function f and you are
situated at a candidate location 6y, Theorem 3.2.3 suggests that you should “move your

79

guess in the direction —V f (%)” in order to find a new candidate which will exhibit a
lower value of f. An illustration of this concept is given in Fig. 6.

flxy) =x*+2y°

Figure 6: An illustration of Theorem 3.2.3 using the function f(x,y) = x% 4 2y?. Contour
lines at z = 1,2,3,4 are shown dashed blue lines, along with a sample point Xy =

(1,0.8)T and £V £(xp).

With this in mind, we can fully state the gradient descent algorithm.

@ Gradient Descent
Suppose f : R” — R is a given differentiable function, 7 > 0 a fixed positive scalar

known as the learning rate, 9_6 € R" a fixed initial point, and let T > 0 be a fixed

number of steps.
At step t > 1, set ; according to the update rule

6r = 6:_1 — 1 (Vf(6: 1)) (24)

Return 9}.

There are many ways to analyze the convergence and long-term behavior of this al-
gorithm; for our purposes, we will state but not prove one of the more basic convergence

results which appears in the gradient descent literature.

' Theorem 3.2.4 Convergence of gradient descent
Let f : R" — R be a convex and differentiable function whose gradient satisfies
the inequality

IVf(8:) = Vf(@)l < L6 —6), V6,6, €R"

Fix an initial point) € R" and a learning rate 7 satisfying 0 < 7 < 2. Generate the
sequence { f(6)}2, according to Eq. (24). Then the sequence { f(6;) }% , converges

to a local minimizer of f.

80

The intuition that Theorem 3.2.4 lends itself to is that for many “suitably well-
behaved” functions f, as long as the learning rate # > 0 is not too large, the gradient
descent algorithm will converge. Picking 1 to be inappropriately large often leads to
sequences of points 0; which jump around in unpredictable ways. Moreover, as we saw
in Theorem 3.2.1, if f is moreover assumed convex and we have found a local minimizer
via Theorem 3.2.4, we know it must also be a global one.

Gradient descent also leads to a zoo of different modifications including adaptive
learning rates, creative ways to calculate the gradient, and the usage of higher-order
information about the behavior of f to inform directional choices. For now, let’s conclude
this section with some applications of gradient descent to simple calculus problems as
well as a risk minimization problem we saw in the previous chapter.

) Example 3.2.5 Gradient descent in action
Consider the two-variable function f : R> — R given by the formula

g(1)

3 _ 2@VR1@@R F_
f0) = e 8 [§<z>

]ele.

Note that f is convex and has a unique minimizer at the point 6* = 0. Its gradient
is given by

& 46(1)2(81)>+(@)?
Vfe) = [5 :
. 7 0.8 . :
Starting from the nearby point 6y = [0 6] and using a learning rate 77 = 0.05, the

gradient-descent update
Ori1 = 0 =11 Vf(6r)

produces the first five iterates shown below:

t i (VF@)' | f@)
0| [0.800, 0.600] | [16.496, 6.186] | 5.155
11| (-—0.024, 0.290 —0.108, 0.633] 1.089
2 | [—0.019, 0.259 —0.083, 0.554] 1.070
3
4

[][
[][
[—0.015, 0.231] | [—0.064, 0.488] | 1.055
[I

—0.012, 0.206 —0.050, 0.432] | 1.044

Note that the values of f are decreasing throughout this process, and the points

0; are slowly converging towards 6* = 0. We illustrate the path of the gradient
descent algorithm in IR? below (initial point not shown):

81

0.4 %

1072

Gradient descent is a powerful tool even when applied to situations where the ob-
jective is not quite perfect; take, for example, the empirical risk associated with absolute
loss. This function is nondifferentiable at many candidate points and its derivative,
when it exists, is not exactly the most straightforward to write down or evaluate. Are
there workarounds to this issue? Yes, as we explain in the example below, and gradient
descent tends to take them in stride.

) Example 3.2.6 Gradient descent and simple linear regression
Suppose we start with six scalar input-output pairs
{(x, 1)}, = {(0,2.0), (1,2.8), (2,3.9), (3,5.9), (4,7.8), (5,10.2) }.

and we wish to use a simple linear model

—

with parameter vector § € R2. The mean absolute error is given by

Because the absolute value function is not differentiable at 0, we approximate each
partial derivative of R,ps with a finite difference approximation as follows. Fix
to > 0 small (in this case to = 10~*) and use the approximation

. Rabs(% + te_i) — Rabs(%) Rabs(% + toé’_i) i Rabs(% — foa)

aRabs ~
— 6y) =1 B .
5 (o) = lim f 2t

S . . . - 1 .
where €] is the first standard basis vector ¢ = {0 . In other words, we approxi-

mate the derivative using its limit definition and a choice of ¢t which is very small.

82

This approximation always exists since even though the absolute function is non-
differentiable, it is continuous, and therefore its difference quotient is always de-

tined as long as the denominator is nonzero. Let ﬁ{\abs denote the finite-difference
approximate gradient.

Next, we initialize the gradient descent loop at 6 = [1 1]"
rate toy = 0.1. For t =0,1,...,5 the first five iterates are

and set the learning

t é?— V/Iz\e;ms(gt)T Rabs(gf)
0| [1.000 1.000] | [—2.500 —1.000] | 1.933
1[[1.250 1.100] | [—2.500 —1.000] | 1.208
2| [1.500 1.200] | [~1.833 —0.667] | 0.583
31 [1.683 1.267] [0.833 0.333] 0.458
4|[1.600 1.233] | [—0.500 0.000 | 0.433

After a few dozen iterations, the parameters stabilize near 6* ~ [1.92 0.90]",
which yields a mean absolute error below 0.05 on this toy dataset. We include
some Python code below for an example implementation of this method.

example data

np.array ([0, 1, 2, 3, 4, 5], dtype=float)
np.array([2.0, 2.8, 3.9, 5.9, 7.8, 10.2], dtype=float)
len(x)

B< X %
Il

hyperparameters

eta = 0.1 # learning rate
h = le-4 # finite-difference step
steps = 100 # number of GD iterations

helper methods
def model(theta, x):
return thetal[0] * x + thetal1l]

def mae(theta):
return np.abs(y - model(theta, x)).mean()

def approx_grad(theta):
grad = np.zeros_like(theta)
for j in range(len(theta)):
e = np.zeros_like(theta)
e[j1 = 1.0
grad[j] = (mae(theta + h * e) - mae(theta - h * e)) / (2 * h)
return grad

gradient-descent loop

theta = np.array([1.0, 1.0])
history = [(0, *theta, mae(theta))]

83

for t in range(1l, steps + 1):
theta -= eta * approx_grad(theta)
if £t <= 5 or t == steps:
history.append((t, *theta, mae(theta)))

results
print("t thetal theta2 MAE")
for row in history:
print (f"{row[0] :<3d} {row[1]:>7.3f} {row[2]:>7.3f} {row([3]:>6.3f}")

3.3 Regularization: Ridge and Lasso Regression

In Section 3.1 we saw how high-degree polynomials or families of interaction terms
can drive the training error practically to zero, only to watch the test error rebound
dramatically. This is essentially due to what we described as overfitting, in which the
data scientist is essentially bending the model around their training data with excess
precision leading to a model which captures not an underlying trend but simply the
noise observed in the original training sample. This leads to unstable optimal weights,
unreliable predictions, and frankly bad models. Regularization is one approach to re-
solving this instability and refers to augmenting the risk function with a penalty that
discourages extremely large weights.

Two penalty families dominate modern practice. Ridge regression adds a squared
vector length penalty which is governed by a regularization parameter y > 0; for exam-
ple, a ridge risk function might look like

R(8) + pll6]I?,

where in this example 6 is a generic set of model parameters and R is any risk function.
The idea here is that for the new and improved objective, an optimal set of weights 6%
has not only low mean squared error but also generally small components; avoiding a
scenario where * has perfect error but must take on extreme values in its entries in
order to perfectly interpolate the training data. Note that in this context y is acting as a
hyperparameter, which is a configuration value set before training (e.g., a learning rate
1, or number of iterations) that governs the behavior of the learning algorithm.

On the other hand, Lasso regression swaps the Euclidean vector length penalty for
an absolute value penalty that might look like:

m

R(G) +p) 169.
i=1

Risk functions such as this one often produce sparse models with zeroed weights that are
easier to interpret. They have the downside, however, of usually being nondifferentiable
and requiring more sophisticated techniques to optimize.

84

@ Caution!

When applying regularization terms to risk functions, we usually omit the intercept
(where relevant) from the regularization term to avoid unnecessarily adjusting the in-
tercept of our model.

There are of course entire books written on these topics; the purpose of this section
is to work through some theoretical results and numerical examples which allow us to
gain some early intuition for these methods and their advantages. Our first step is an
example which will hopefully shed some light on why the two penalty families behave
differently.

) Example 3.3.1 Visualizing Regularization

Consider the multiple linear regression model as trained on a collection of input-
output pairs {(¥;,y;)}i—1, where ¥; € R?. Assume the intercept term is b = 0 for
simplicity. The original model f(a,b; ¥) = a#(!) 4 b¥?) leads to a (mean-squared
error) risk function

| L . "
R(a,b) = —) (vi — (ax) + b2®))2

It is important to emphasize that when viewing the training data as fixed scalars,
the risk function is simply a function of two variables 4,b and can be visualized
more or less in the same manner as other such functions. In particular, it admits a
contour diagram.

When the only objective on hand is R(4,b), the minimum in question is found
by solving the normal equations and identifying a unique minimizer. When a
regularization term enters the picture, things change. Take for example (with p =

I

1) the Regularization term || [Z} = a® + b?. Note that this also admits a contour

diagram, and has a unique minimizer at the origin; we can overlay it on top of the
earlier one:

85

~.
- ~——

——— \
- RN \
S
as,b*y
7 [
! ’
’
J y K
’ /
- ’ 4
. ’
// ,/
/’ //

-

7 ’ o —\—"-‘::\— (a})r}a(gj(; ’ b :id ge)
~ S \

\

Thus, the minimizer (a;fidge, ;‘kidge) of the ridge regression problem can be thought
of as trying to make both objective functions as small as possible, proportionally
to the weight u > 0 which controls how far away from the original minimizer
we wish the solution to be. On the other hand, if we instead consider the lasso
penalty (again with y = 1) |a| + |b|, the contour lines of the penalty while, while

still centered at the origin, change:

b

(aikasso’

]
’
7\

) .
~

*)/ ,
lass ¢
4 o

Instead of circles centered at the origin, the level curves take on the shape of
diamonds. In three and higher dimensions, these become cubes and hypercubes.

86

A subtle observation is that the level curves of R(a, b), as they spread out from the
minimizers (a*,b*), will more quickly intersect the “points” or “corners” of the
level curves of the penalty |a| + |b| which lie on the axes—precisely where one or more
coordinates will equal zero. It is for this reason that lasso penalties often (but not
always) lead to optimal parameters which have one or more zeros.

Next we will revisit the multiple linear regression model from earlier and show that
the solution to the ridge regression problem exists and is, in general, unique.

' Theorem 3.3.2 Optimal parameters for ridge regression and MLR

Let {(¥;,y;)}"_, be a collection of training data with ¥; € R? and y; € R. Let
i > 0 be a fixed hyperparameter, and suppose we model y using a multiple linear
regression model f (@, b; X) of the form

f(@,b; ¥) =@ ' X +b.

Recall the design vectors Z; and the design matrix Z as usual. Let 6"
and define the ridge risk

Il
=
&

= 1 X2 . .
Ru(0) = " 2(%‘ —672)% + pl|lo|?
Then, for each y > 0, the unique minimizer is given by
. NS |
= (27 z4+mlin) 275

Here, I, is the (d + 1) x (d + 1) identity matrix with the first entry set equal to
zero.

J Proof

Since 6 > |62 is strictly convex (this will be included as an exercise), Ry(g) is

a strictly convex function and therefore if VRy(é’*) — 0 then 6* will be a unique
global minimizer. Thus we can approach this problem as usual, by looking for a

solution to the equation VR, ((7*) — 0. We have already computed the gradient of
the mean squared error in the previous chapter:

2

VRSq (g) = _E

Z' (j-129),

and it is relatively straightforward (by expanding the vector length) to see that
Vull@|2 = 2u,

therefore we have

i 2 . . .
VR, (0) = —EzT (i — Z0) +2ul;,10.

87

Note that 1,6 is simply the vector 6 with the first entry removed, i.e., W. Setting
this gradient to 0 and rearranging yields the normal equations

(3272 + plga)f = 1275 = (Z"Z+mul1)8 = 277

We claim that the matrix A = Z"Z + nu I, is invertible. Since it is square, it is
enough to show that its kernel consists only of the zero vector. Suppose A7 = 0
for some 7 € R*!. Left-multiplying by 7' and using symmetry gives

0 =0 AG=0"Z"20 + nud' 1,17
= 1Z3|* + np||lasa7]*

The rightmost term can only equal zero if I;,,7 = 0, which means that all entries

of 7 except possibly the first entry (which gets killed by I,.1), must equal zero. If
this is the case, based on the definition of Z (in particular, the leading one in each
row), we would have

7(1) 1 X7 [0 (1)

- 0 I I A)

7= — 77 = = € R"
0 1 %1 |0 7

n

But then the only way that ||Z7]|?> = 0 as well is if each entry of the vector above
is zero, i.e., if 7 = 0 after all. Thus the kernel of A is trivial and it must therefore
have an inverse. Solving for 6 therefore gives the unique minimizer

o — 1 -
0 = (Z'Z+nplyq) 277,
as claimed.

Note that this pipeline works just as well out-of-the-box when data transformations
are used and we consider instead a multiple regression model in the transformed fea-
tures. We demonstrate this pipeline in action in the following example.

) Example 3.3.3

The analytics staff of an NHL franchise would like to forecast the number of goals
a team will score in a game, y, using only the shot volume, x, it generates in
a given game. Coaches expect that adding shots is beneficial up to a point, after
which fatigue and lower-quality opportunities dampen the return, while very high
volumes often come when the opponent is already worn down. The resulting
“rise-plateau-rise” intuition suggests a weakly cubic pattern. By observing the
performance of the franchise over several seasons and averaging the goal return
for various numbers of shots, an analyst collected the following dataset of training
observations:

88

xj(shot) | 10 15 20 25 30 35 40 45 50 55

yi (average goals) ‘ 556 810 9.74 1070 11.21 1150 11.79 1230 13.26 14.90

To explore the effect of ridge regression and help mitigate overfitting, the analysts
consider the model

—

£(6; x) =00 1 g0y 4 @52 4 50353
together with the risk function
g 1 7 2 F1\2 4 (3212 1 (F(3))2
Ru(8) = 75 2 (vi = £(6 %)% + p((@) + (822 + (69)%), u>o.
i=1

The corresponding design matrix [Z] is given by

10 100 1000 |
15 225 3375
20 400 8000

25 625 15625
30 900 27000
35 1225 42875 |’
40 1600 64000
45 2025 91125
50 2500 125000
55 3025 166375 |

2] =

U VGV G W G U Y

and thus by Theorem 3.3.2, the optimal parameter vector is given by is
o) o\ -1 -
0, = ([z]'[z) +10p1Ly) "[2]"7,

giving, for various values of i, the weights
u 60 g 6 6o
0 |-3112 1.152 -0.032 0.000
0.2 | -0.579 0.852 -0.022 0.000
1 3.091 0417 -0.007 0.000
5 | 5620 0.118 0.003 -0.000
10 | 6.089 0.062 0.005 -0.000

We illustrate the curves of best fit in the plot below. The analyst observes that
for u small, the weights tend to be larger in general but also more heterogeneous,
with some components significantly larger than others; for u large, the coefficients
become more homogeneous and lower in scale overall.

89

e data

6| *~ / |
—u=0.2

14 U=

10 | 8

10 20 30 40 50 60

' Example 3.3.4

The performance analytics team for a Grand Tour cycling squad wishes to predict
the finishing time of a rider on a given stage, y; (in hours) from three key features:

(1)

the stage length X;’ (in km), total elevation gain X; 2) (in meters), and average

temperature x (1n °C). Sparsity in the model parameters is desirable, since some
features may have negligible impact on time. The team collects data from five
recent stages:

stage i 551-(1) (km) 551-(2) (m gain) 3?53) (°C) | yi (hours)
1 150 2500 20 4.02
2 160 3000 18 4.30
3 170 2800 22 4.15
4 140 2200 23 3.85
5 155 2600 19 4.08

The team fits the multiple linear regression model
£(8: %) = 89 1 gD 4 OO L FOZO Fegs
The design matrix is given by

150 2500 20
160 3000 18
170 2800 22
140 2200 23
155 2600 19

N
I
S S Y

Since the designers wish to promote weight sparsity and prevent overfitting, they
opt to use lasso regression and introduce the risk function

5
Yo (i~ 812) + [

i=1 j=1

U‘IIH

90

Because R, is not differentiable in closed form, as in Example 3.2.6, we approxi-
mate its gradient by finite differences. For a small {5 > 0 set

BRM ~ Ry(g+togj) = Ry(g— t()é}')
35(1) 2to ’

i=0,1,2,3.

and let €R\V denote the approximate gradient of R, according to the compo-
nentwise definition above. Taking ty = 107%, step size # = 1077, and running
T = 2 x 10° iterations of finite difference gradient descent produces the following
approximate minimizers 6* for various values of y:

u é'*(O) é’*(l) 5*(2) é’*(S)
0 |2961 -0.001 0.001 -0.007
0.1]2.660 0.000 0.001 0.000
1 (2692 0.000 0.001 0.000
5 12834 0.000 0.000 0.000
10 |1 3.012 0.000 0.000 0.000

After some further analysis, the team makes the following observations. First,
when little or no lasso term is incorporated into the risk function, each of the three
features contributes to the model: adjusting for scale, it seems that stage length
and elevation gain are reasonably comparable, and that temperate seems to be
somewhat more predictive of stage duration when compared to the others. How-
ever, when a stronger lasso term is incorporated into the risk, the temperature and
stage length features fall away and elevation is revealed as the strongest surviving
feature. This might make sense; if the stage lengths are all relatively close to their
mean and temperature is fairly noisy, perhaps the most predictive feature when
the model is constrained in its flexibility is in fact elevation gain. Lastly, as u gets
larger (in this case, approaching 10) we observe the tendency of the lasso penalty
to drive coefficients to zero.

3.4 Bonus: Constrained optimization

@ Key Idea

This is a bonus section and contains some extra material which will not appear on the
final exam.

Our modeling journey has treated most parameters as free agents: if minimizing the
empirical risk asked us to set § = —10° we dutifully complied. Reality, of course, is
rarely so accommodating. Many scenarios require the model parameters to conform to
various geometric or mathematical patterns. Imagine you run a small logistics platform
that must move digital photographs, printed books, and boxed merch from a handful
of “source” data centers and warehouses to an equally small collection of “destination”
retail nodes.

91

Every megabyte or mile has a cost, and—crucially—each location has a hard budget
on what can leave or arrive. Ignoring those limits would produce an “optimal” plan that
ships more cargo than a warehouse owns or delivers negative packages to a store: non-
sense that a spreadsheet might gladly output if we forget to write down the constraints.

Back in Section 3.2 we learned that an unconstrained minimizer of a function f(6) is
found by hunting for a point where all partial derivatives vanish. When the feasible set
is restricted by one or more equations

@) =0 k=1,...,m,

the gradients of f and the gix’s must strike a delicate balance: at the optimum they
become parallel. This geometric fact is codified by attaching a real-valued weight A;—a
Lagrange multiplier—to each constraint and folding everything into one scalar function,

LOMN, ..., An) = f(f)+f;Akgk(f).
k=1

Finding stationary points of £ gives you the candidate minimizers.

o Theorem 3.4.1 Lagrange Multiplier Theorem

(1) Suppose f,g : R" — R are continuously differentiable. Assume §* € R”"
satisfies the constraint

g(6*) =0,
and that 6* is a (local) minimizer of f subject to g(X) = 0. If
Vg(6*) # G,
then there exists a real number A*—the Lagrange multiplier—such that
V(%) + A*Vg(F*) = 0.

Equivalently, the gradients Vf and Vg are parallel at the constrained opti-
mum.

@I g,....4m : R' — R are continuously differentiable and
rank[Vg1(6*) - Vgu(6*)] =m, then there exist A}, ..., A% € R such that

m
V@) + Y A V() = .
k=1

The proof of this theorem requires some more advanced multivariable calculus (namely
the implicit function theorem) than is desirable for us to cover, so we omit a proof.!

Assuming we wish to minimize a differentiable function (such as a risk function)
f : R"— R subject to a single equality constraint

g(6) =0,

You can find one here.

92

https://www.math.cmu.edu/~gautam/sj/teaching/2016-17/269-vector-analysis/pdfs/lagrange.pdf

The Lagrange Multiplier Theorem converts this constrained problem into the familiar task
of finding an unconstrained critical point. To do so, we introduce a new scalar variable
A € R and define

LB A) = f(8)+A8().
Then we set all partial derivatives to zero:

R . ,
VeL(B,A) =0, 57 = g(f) = o.

These n 4 1 equations form a linear or nonlinear system for (6,A). Each solution fur-
nishes a candidate optimum. Convexity or a second-derivative test tells whether a candi-
date is the minimizer we want.

Figure 7: An illustration of the Lagrange multiplier theorem: on a feasible region (red) a

minimizer 6* is found when the contour of f (blue) is tangent to the feasible region, i.e.,
the gradients of f, g are parallel.

Geometrically speaking, V f(6*) is perpendicular to the level-set of f, while Vg(6*) is
perpendicular to the constraint. Tangency therefore forces the two vectors to be parallel,
exactly the relation guaranteed by the Lagrange multiplier equations.

) Example 3.4.2 Point on a Line

Suppose we wish to minimize the squared distance to the origin,

g(1)

8 = @+ @2, §= [g(z)

] € R?,

subject to the linear constraint
gf) = 6V +d% 1 = 0.
The Lagrangian is formed by writing

LEA) = @D+ @D) 4 AFD +80) —1).

93

This yields the equations

9L 254 a =0
o6(1) §
oL
_ (2) _
5 =200 +1=0,
% g0 13 _1 =0

-

From the first two equations 6(1) = 6@ and hence 26 =1 — §(1) = ¢ =
Substituting back gives A = —1. The result is

N[—

-

0 = B:} f(6%) = 05.

) Example 3.4.3 Estimating judges’ weights in gymnastics scoring

In many gymnastics competitions the final score y shown to the audience is a
weighted average of three components reported by different judging panels:

Form | ¥1) | execution quality (fewest deductions),
Difficulty @ | declared difficulty value of the routine,
Style / Artistry xB) | overall aesthetic impression.

The meet regulations keep the exact weights secret, revealing only that they are

non-negative and sum to 1. A coach has collected training data {(¥;,y;)}'_; where
2(1) 2(2) =(3)

- T .]
X — (xl- XX) are the three sub-scores for routine i (on a scale from zero to
ten) and y; is the published final score. She wishes to recover the hidden weights

|
—_
~

-~

=1T®

w®
w®)

assuming the meet really is using the linear rule f(@;x) = @ ' X. Let

R@) ==Y (i~ @ %)
=1

1

1, . -
=_[F-Ual?, U=|:|eR™

S|

With 1 = (1,1,1) T and the sum-to-one constraint is ¢(@) = 1'@ — 1 = 0. Intro-
duce A € R and set

1
L(@,A) = R(@®) + A g(@) = = || - UB|2 + A (17% —1).

The stationary conditions, which are the constrained form of the normal equa-
tions, are given by

Vsl =—2U" (j — U®) + M1 =G, (25)
OL/OA =1Tw—1=0. (26)

94

Assuming U U is invertible, (25) yields
@ = (UTU)"! (UTy?— gm). 27)

Substituting (27) into (26) gives

jr_ 2 17(UTu)"'uTy—1
n 1T(UTU)1

Finally,

1"(UTu)"'uTy—1
1T(UTU)11

@ = (UT0)|UTj - 1 (28)

which minimizes the mean-squared error while forcing the weights to sum to one.
If desired, any negative entry of @* can be interpreted as evidence that the pub-
lished score is not a convex combination of the three panels, contradicting the
coach’s assumption.

3.5 Exercises

Exercise 3.1

Consider the following training dataset of scalar-valued input-output pairs:

{(x,',yi)}?:1 ={(0,1.2), (1,2.8), (2,4.5), (3,7.1), (4,8.9)}.
Below are four candidate model formulas:

(i) Simple linear regression:

(ii) Quadratic regression:

(iv) Multiple exponential regression:

—

@ x) = 80 450 ¢ 43D 2

95

And here are four design matrices built from the same x;, with some entries
rounded:

10 1 1.000
11 1 0.368
(A) |1 2|, (B) |1 0135(,
13 1 0.050
1 4 1 0.018
1 1.000 1.000 10 0
1 0368 0.135 11 1
(C) |1 0135 0018, (D) |1 2 4
1 0.050 0.002 139
1 0.018 0.000 14 16

Match each model formula (i)-(iv) to its corresponding design matrix (A)-(D).

Exercise 3.2

In a cell proliferation assay, a biologist measures the cell density (in millions of cells
per mL) at various time points (in hours) after seeding a petri dish with bacteria:

(G y) 1o, = {(1,2.1), (2,29), (3,37), (4,45), (5,5.1), (6,5.8), (7,6.2), (8,6.5)}.

where x; is time in hours and y; is cell density. The biologist, looking to model this
data, chooses to use simple polynomial regression with degree d = 3.

(a) For each point in the training dataset, write down the polynomial feature

vector
1
x;| = R*,
[z] xiz €
X3

and assemble the design matrix [Z] € R8*4.

(b) Using Theorem 3.1.1 and some Python where needed, compute the parame-
ters 0* which minimize the MSE with respect to the training data.

(c) Produce a quick Python plot of the original data points and the fitted cubic
curve over x € [0,9].

Exercise 3.3

A climatologist measures ambient temperature y; (in °C) at times x; (in hours after
sunrise) over a half-day:

{(x;,y:))}_, = {(0,15.0), (2,17.3), (4,20.1), (6,22.8), (8,21.5), (10,18.2), (12,16.0)}.
To capture the periodic pattern, she considers the sinusoidal regression model

—

£(6; x) =60 + 6D sin(0.1 x) + 6? sin(0.2 x) 4 6 sin(0.3 x).

96

(a) For each point in the training dataset, compute the transformed feature vector
[x;] and the corresponding design matrix [Z] € R7*4.

(b) Using Theorem 3.1.1 and some Python where needed, compute the parame-
ters 6* which minimize the MSE with respect to the training data.

(c) Compute the training MSE of this sinusoidal model and compare it to the
MSE of the simple linear model

—

£(6; x) =60 1 g0y,

(This requires a separate implementation of the simple linear model, which
we have done plenty of times.) Which model is more appropriate here?

Exercise 3.4

Suppose we have training data {(x;,y;)}!"! with x; € R all distinct and y; € R.
Show that there exists a polynomial regression model of degree d = n that fits the
data with zero mean squared error:

1 n+1

F(@x) = Jg 00, R(B) = - o 1_21 (vi— f(@x))* = 0.

(a) Show that the polynomial design matrix [Z] is invertible by using Theo-
rem 3.1.2 and Exercise 2.16.

(b) Deduce that there is a unique solution 0* of the linear equation

From this, complete the proof. (Hint: it may help to rewrite the risk as a vector
length.)

Exercise 3.5

Below are four brief modeling scenarios. In each, the data scientist is considering
adding pairwise interaction terms between the listed features. For each scenario,
(i) list all possible interaction terms, and (ii) for each such term, speculate whether
incorporating the interaction into a multiple linear regression model would be
appropriate (clearly write “I” for include and “E” for exclude). You can base
your answer on criteria such as whether or not the features operate completely
independently from each other, or whether multiplying the features might present

numerical issues related to their scale. There will be more than one correct answetr.
(a) (Housing prices) Features: x(1) = square footage, x(2) = number of bed-

rooms, x(3) = age of house. Target: y = selling price of a home.

(b) (Drug synergy) Features: x(!) = dosage of Drug A, x(?) = dosage of Drug
B, x(®) = patient weight. Target: y = survival time of mouse infected with

97

Disease X.

(c) (Marketing effectiveness) Features: xD =TV ad spend, x2) = online ad
spend, x(®) = seasonality index, x(*) = binary variable for new product that
week. Target: y = weekly gross sales.

(d) (Concrete fatigue) Features: x(1) = temperature, x(?) = pressure, x® =

humidity, x*) = age of concrete. Target: y = weight the concrete slab can
hold before breaking.

Exercise 3.6

In a neuroscience experiment, reaction time y; (ms) is measured for stimulus in-

(1)

tensity x; and attention level xfz) on n = 6 trials:
i|x) x|y,
1110 2 |250
2,120 2 |230
3110 5 |200
4120 5 |190
5/ 15 3 |210
6|15 4 |205

The neuroscientist assumes the model

—

£(6,0,b;) = 6Wx() 4 @52 4 5 xMx@ 4 p,
(a) Construct the interaction design matrix

1 xgl) xgz) x%l)xgz)

[z]=|: : : ERYY, §=[y1,...,y6

1 xél) xéz) xél)xéz)

(b) Using Theorem 3.1.4 and some Python where needed, compute the param-
eters 6*,0*,b* which minimize the MSE with respect to the training data.
Then, compute the training MSE.

(c) Repeat this process without the interaction term vxMx@). Which model

performs better? Is it worth the hassle to incorporate interaction here?

Exercise 3.7
Let f,g: R" — IR be convex functions.

(a) Show that the sum /() = f(6) + g(6) is convex.

(b) Suppose f is strictly convex and g is convex. Prove that h(6) = f(6) + ¢(6) is
strictly convex.

98

(c) Prove that any affine function L(6) = @' 6 + b is convex, where @ € R",b € R
are fixed. Is it strictly convex?

(d) Show that the pointwise maximum

m(6) = max{f(6), g(6)}

is convex. Hint: Use the epigraph definition of convexity, and consider some exam-
ples in the case of n = 1.

(e) Let a > 0 be a fixed scalar. Prove that the nonnegative scaling hb) =a f (6)
is convex.

Exercise 3.8

Let f : R — R be twice differentiable. Prove that f is convex if and only if
f"(x) > 0 for each x € R by completing the following steps.

(a) Assume f”(x) > 0 for all x. Given x < y, apply the Mean Value Theorem to
fon [x,y] to find ¢ € (x,y) with

Then apply it again on [, c] and [c, y] to show f'(x) < f'(c) < f'(y).
(b) Deduce from (a) that for any x < y, it holds

) - @) = [z [F@i = £ @-x),

ie f(y) = f(x) + f'(x)(y — x).

(c) For x < yand t € [0,1], set z = (1 — #)x + ty. Using the inequality in (b)
twice (once between x and z, once between z and y) show that

flz2) < (A=8)f(x) + tf(Y)
Conclude that f is convex.

(d) Suppose f is convex. For any x < y < z, prove

fy) —fx) o f2)—fly)
Y e B Z=Y

Fix x and let y — x*, z — x~. Show f’ is monotone increasing. Conclude
that f”(x) > 0 for all x.

99

Exercise 3.9

Determine for each of the following functions whether it is convex, strictly convex,
or neither. Justify your answers.

() p(¥) = %>, XeR"

Exercise 3.10

For each of the following objective functions, apply five iterations of the gradient
descent algorithm (24) with the specified learning rate and initial point. Create
a table with the iterates §t, the gradients V f (é}), and the corresponding function
values f(6;) (see Example 3.2.5 and Example 3.2.6 for examples of tables). Show
ALL of your steps, you may ONLY use Python to carry out long calculations (like
you would use a calculator).

(@ f(0)=0% 75n=02 06 =2

b) f(6) =e”, 5 =005 6)=15.

(© f(6) = (1)’ +2(6@)>, y =01, 6 = H

@ F@) =@ 1)+ @D +2)? 5=015 8= ﬂ

Exercise 3.11

For each of the functions and hyperparameters below, perform five iterations of
the finite-difference approximate gradient descent method (see Example 3.2.6 or
Example 3.3.4), using step size fo = 10~ to approximate each partial derivative.
Create a table with the iterates ;, the gradients Vf(6;), and the corresponding
function values f(6;). You can and should use Python to carry out the computations
algorithmically. You may generate the desired tables in Python and submit them
as screenshots or replicate them by hand with a three-decimal rounding precision.

@ f(0) =16, 7=01, 6 =1
(b) f(0) =6% n=10"3 6p=1.

—

© £6) =180+ EDR, n=107 &=}

100

(d)

£(8) =sin(@D) + cos(f®), 5 =5x10"2, 8 = m

Exercise 3.12

Devise a simple real-world scenario in which you wish to predict a scalar target
y from d = 3 features. Look up a real dataset or generate a synthetic dataset of
n = 10 observations

{(xzryl)}z 17 X; € 1R3, yi € R.

(Do yourself a favor for what is to follow — keep the data model simple and sweet! Compli-
cated data will make the next part harder for you.) Then:

(a)

(b)

()

Construct and store the design matrix for the corresponding multiple linear

regression model f (6; X) (interaction terms are left for you to decide!), as well
as the label vector and any other ingredients needed for computing the risk.

Using the MAE risk

- 1 M0 I
abs 9 Z}yz 9 3_5

approximate the gradient of R,ps by finite differences (step size ty = 107%)
and implement gradient descent in Python to compute an approximate min-
imizers 6* of the MAE for the model f (6; X). Use a suitably small learning
rate (this may need to be quite small, e.g., 7 ~ 1077 or smaller) and enough
iterations (T ~ 10° could be necessary) to ensure your approximate parame-
ters are close to a true minimizer.

Report the final model parameters and the training MAE. Generate a Python
plot of the MAE risk vs. iteration number.

Exercise 3.13

Let {(x;,yi)}/_, be scalar-valued training data. Consider the simple linear regres-
sion model

" . S _ |g©
6, x) =60 g0y, g= [g]EIRZ,

and the ridge-regularised mean-squared error

<

Ru(®) = 2 V(= F@ %))+ w@VR, >0

1

I
iy

Use Theorem 3.3.2 in the d = 1 setting to write down an analogue of Theorem 2.1.2
in for simple linear ridge regression.

101

Exercise 3.14

An ice-cream shop in Palm Springs records the average daily temperature x; (in C)
and the number of cones sold y; (in hundreds) on eight summer days:

{(x;, 1) }o_, = {(18,2.1),(20,2.5), (22,3.0), (24,3.6), (26,3.8), (28,4.2), (30,4.6), (32,5.0) }.

The manager, who is a retired data scientist, fits the simple linear model f(6; x) =
6 x + 6 with an lasso penalty:

18 S
u(0) —gz £) +uldV), u>o.

(a) Using finite-difference approximate gradients (step tp = 10~%) and gradient
descent, implement a Python method that returns (3;; for y € {0,0.1,1}. Use a
suitably small learning rate (this may need to be quite small, e.g., 7 ~ 10~7 or
smaller) and enough iterations (T ~ 10° could be necessary) to ensure your
approximate parameters are close to a true minimizer.

(b) Report the three pairs ((3;(41)*, (3;,0)*) and the corresponding training MSE.
Comment briefly on how increasing u alters the slope of the fitted line and
speculate as to why this might be the case.

Exercise 3.15

A battery-testing lab measures the life-span y; (in hours) of a smartphone under
three operating conditions:

X; ' = screen brightness (% of max),
-(2)

X;” = number of running apps,
561(3) device age (months).

Ten experiments yield

[0 0]y,
1| 20 2 1 |16.0
2 | 30 3 2 | 142
3 | 40 4 2 | 126
4 | 50 5 3 | 113
5| 60 5 4 |98
6 | 70 6 4 8.7
7 | 40 2 1 [152
8 | 55 3 2 | 120
9| 35 4 3 1238
10 | 45 5 3 | 11.0

The lab models y with multiple linear regression

f(§, 7)) = 60 + gWx1) 4 g2 %2 4 g6 %G 6 ¢ RY,

102

and employs the ridge-regularised mean absolute error
~ 1 1o . 3. s
Ru(@) = 5 2 |vi = f8 %) | +u 1 (69)2, u>o0.
i=1 j=1

(a) Construct and store the design matrix for the corresponding multiple linear
regression model f(6; X) (interaction terms are left for you to decide!), as well
as the label vector and any other ingredients needed for computing the risk.

(b) Using finite-difference approximate gradients (step to = 10~*) and gradient
descent, implement a Python method that returns 5;‘, for y = 0.05. Use a
suitably small learning rate (this may need to be quite small, e.g., 7 ~ 107
or smaller) and enough iterations (T ~ 10° could be necessary) to ensure
your approximate parameters are close to a true minimizer.

(c) Report 6* and the achieved training MAE. Discuss qualitatively how the ridge
term affects the weights compared with setting y = 0.

103

4 Modeling with Probability

It is remarkable that a science which began with the consideration of games of
chance should have become the most important object of human knowledge.

- Pierre-Simon Laplace

In the earlier chapters of this book, we approached data science problems from the
perspective of deterministic models, which are characterized by the working hypothesis
that the output of the underlying system can be described by a fixed mapping y = f(x),
which of course may depend on some parameters or unknown quantities that we seek to
capture. These sorts of models often work perfectly fine, but they provide the scientists
no means of capturing uncertainty in the underlying data or resulting predictions. In
other words, although we may freely report the loss or error associated with a given
prediction for an input-output pair in our training data, it becomes impossible to report
error associated with a predicted outcome without the foreknowledge of its true output
value.

In contrast, a probabilistic approach treats the input and output variables as a random
variables modeled via probability distributions, which are functions defined on the space
of all possible outputs (e.g. real numbers, classification categories, etc.) and which
reveals information about how likely particular outputs may be. This lets the scientist
quantify confidence in predictions, incorporate prior knowledge through distributions,
and gracefully handle missing or noisy observations.

Our main examle of a probabilistic model will be the Naive Bayes classification
model, which will be introduced in Section 4.4. The majority of this chapter will cover
some fundamental concepts and tools from probability theory, which will be of great use
in this course and beyond.

4.1 Sample Spaces and Probability Measures

A sample space (1 is the set of all possible outcomes of a random experiment. For this
course we always assume () is a finite set. An event is any subset A C () corresponding

to outcomes of interest. We denote by 2 the collection of all subsets of Q) (including the
empty set). A probability measure is a function P (-) : 29 5 R assigning to each event
A a number P (A) satisfying the following three properties:>

(i) P(A) >0 for each A C (),
(i) P(Q) =1,

ZProbability measures are a theoretical construct which allow us to model all of the intuitive beliefs
and sometimes weird qualities humans associate with randomness. There is a long and rich history on
this topic. See Wikipedia: History of probability.

104

https://en.wikipedia.org/wiki/History_of_probability

(iii) If Ay, Ay, ..., Ax C Q) are events such that A; N Aj = @ for each 1 < i,j < k with
i # j, then IP (Ui.;l Ai> =¥k P (A).

It follows that for any event A C (), the complement A° = {w € Q) : w ¢ A} satisfies

? You should prove P(A°)=1—-P(A).
this on your own. In this course, we will focus on discrete sample spaces, which are sample spaces
() that are either finite or can be enumerated in the form wj,wy, ..., ... (e.g., “heads or
tails,” or “1, 2, 3, ...”). These are distinguished from continuous sample spaces, which
are inifinite sample spaces that cannot be nicely counted (e.g., R or R", etc.). Probability
theory on these types of sample spaces require more technical machinery so we will save

those for later study.

@ Key ldea

Probability measures can be specified in many different ways. In this course, when
Q) is finite we will usually specify the measure by assigning to each outcome w € ()
a probability IP ({w}). Afterwards, if A C Q) is any event, IP (A) is simply the sum

YwealP ({w}).

We distinguish a specific outcome w € () from the event containing just that outcome,
which is denoted {w} C Q. This is because probability measures are, strictly speaking,
defined on events and not outcomes. In the discrete setting, this distinction can be
dropped without many issues, but we will emphasize it here for the sake of precision.

) Example 4.1.1

Consider rolling a fair six-sided die. The sample space is given by

0=1{1,234,5,6},
P ({i}) =% foreachi=12,...,6.

We can consider different example of events:

A = {roll an even number} = {2,4,6}
B = {roll at least a four} = {4,5,6}
C = {roll a two or a three} = {2,3}

Then we have:

PA)= ¥ P({i})=
ie{24,6}

PB)= ¥ PUih=1
ie{4,5,6}

PC)= ¥ P{})=1:
ie{2,3}

Events should always be specified in such a manner so that once the random trial or
experiment has been performed, it is completely unambiguous as to whether the event
occurred or not. Suppose that (2 is as in Example 4.1.1.

105

VALID EVENTS | “the die rolls an even number,” “the die rolls a multiple of three”
NOT EVENTS | “the die rolls a good number,” “the die bounces two times”

The idea of “good numbers” are vague in this context, so the scientist should define
these notions explicitly. On the other hand, one might certainly count the number of
times the die bounces when tossed, but if this detail is not accounted for in the sample
space, we cannot treat it as an event. In such case, we should re-define (2. Note that
in many instances, we might not always write down () explicitly (especially when it is
very large). However, for one’s first encounters with the concept, it is instructive to see
it expressed explicitly as in the examples in this section.

) Example 4.1.2

Suppose we are recording the weather on a given weekend. Each day can be

recorded as either S (sunny), R (rainy), or C (cloudy). Therefore, the sample space

consists of all pairs of outcomes (w1, w;) where w; € {S,R,C} fori = 1,2. The

outcome (S, C) represents the observation that Saturday was sunny and Sunday

was cloudy. Based on historical data, we can describe the probabilities of each
? Verify that the en- outcome in the table below:

tries sum to 1.

s\ | S R C
S (025 0.15 0.10
R |0.15 0.09 0.06
C |010 0.06 0.04

Consider the two following events:

A = { no rainy days }
B = { at most one cloudy day}

We can compute their probabilities as follows.

P(A) =P ({(55),(5C).(C5),(CCO)})
= 0.25+0.10 + 0.10 + 0.04
= 0.49,
P (B) =1 — P ({more than 1 cloudy day}*)
—1-P({(C.C)})
= 0.96.

The second calculation is an example of what is sometimes called the complement
trick, where computing the probability of the complement event and subtracting
it from one is easier than computing the probability of the event itself.

A useful tool for computing probabilities is what we will call the union rule, which
states that if A, B C () are any two events, then

P(AUB)=P(A)+P(B)-P(ANB).

Hopefully this statement is somewhat intuitive; we illustrate it in Fig. 8. We encourage
the reader to write a proof on their own: refer to the proof of Theorem 4.3.4 later on if
inspiration is needed.

106

Q

Figure 8: Visualizing the union rule with a Venn diagram.

The last example in this section is an important one which will start chipping away
at the central application of this chapter.

) Example 4.1.3 Binary Feature Vectors

Let d > 1 be a fixed integer. Then the sample space of binary feature vectors is
given by

Q={¥eR: %) € {0,1} foreach 1 < i < d}.

For example, if d = 3, () consists of eight possible vectors, given below:

- {

OO, O OO
(SR o R S o W)
OR = "or o
[EEGEE I)

More generally, Q) consists of 2¢ elements. Note that we can specify any probability
measure on () that we wish to consider; not simply the uniform one- this will be
crucial later.

4.2 Counting and Combinatorics

Our next section concerns the following important question: how, in practice, do we
compute probabilities? In many scenarios where the sample space is finite, this often
simply reduces to counting the number of outcomes in a particular event. The logic
underlying this observation is worth stating as a theorem below. If A is any set, we
write #A to denote the cardinality of A, i.e., the number of elements in the set.

) Theorem 4.2.1

Let Q) be a finite sample space. Let P (-) be the uniform measure which associates
an equal probability to each singleton event {w} C Q). Let A C Q) be any event.

107

Then

P(A) = %
J Proof
1 #A
P (A) = w;]P ({w}) = Lo~

This proof highlights a deeply intuitive property of probability: If all outcomes in
a random experiment are equally likely, the probability of a particular event is just the
ratio of the number of outcomes in the event to the number of all possible outcomes.
Theorem 4.2.1 also suggests that whenever we need to compute probabilities in scenar-
ios where the underlying measure is uniform, it amounts to counting the number of
outcomes in both the event of interest and its parent sample space.

Combinatorics is the branch of mathematics that studies the counting, arrangement,
and selection of discrete objects. For our purposes, we will cover a few basic concepts
and techniques which concern counting certain arrangements and outcomes of pro-
cesses. Sometimes the following are referred to as the “fundamental rules of counting;”
the language is a bit grandiose since these rules will hopefully seem fairly obvious, but
it is worth emphasizing their role in how we systematically count complex collections of
outcomes.

@ Product Rule

Suppose a process (random or otherwise) occurs in k stages which are all independent
of each other. If the i-th stage has n; > 1 possibilities, then the total number of out-
comes across all stages in the process is ny - np - - - n.

A simple example: if one rolls a six-sided die 10 times, there are 6!° possible se-
quences of die rolls.

@ Sum Rule

Suppose a process (random or otherwise) has k sets of mutually exclusive outcomes.
If the i-th set has n; possibilities, then the total number of possible outcomes of the
process is ny +np + ... + ny.

The sum rule applies when we classify outcomes into disjoint types (for instance,
license plates might be of Type A or Type B). Counting each type separately and then
summing leads to the desired total. The next two tools, permutations and combinations,
are a bit richer.

108

@ Permutations

Suppose we begin with n distinct objects and we wish to count the number of ar-
rangements of k of them in order (i.e., with emphasis on the first object, the second,
and so on). Then there are

nn—-1)---(n—k+1) = =]

possible arrangements. The factorial n! counts the number of ways to order all n ob-
jects and is defined by

00=1, nl=n(n-1)! forn>1.

We use the notation P (1, k) to refer to the number of ordered arrangements of k items
from a collection of n distinct items.

You have hopefully seen these numbers before: for example, n! shows up in the Taylor
series expansions of smooth functions in Calculus. n! is notable for its rapid growth as
n gets large, as evidenced below.

n \1 2 3 4 5 6 7 8 9 10
n! \ 1 2 6 24 120 720 5040 40320 362880 3628800

@ Combinations
Suppose we begin with n distinct objects and we wish to count the number of selec-
tions of k of them without regard to order (i.e., we only care about the k objects as a
set). Then there are

nmn—1)---(n—k+1) n!

k! - (n—k)'K!

possible combinations. We use the notation C (1, k) to refer to the number of un-
ordered combinations of k items from a collection of n distinct items.

C(n,k) is often also written in the notation (}) and is more commonly read as “n
choose k.” These are also often referred to as the binomial coefficients, owing to the fact
that for any x,y¥ € R and n > 1, one has
n
(x+y)" = Z xky”*kC (n,k).
k=0

Some basic instances of combinatorial coefficients which are worth memorizing are given
in the theorem below.

J Theorem 4.2.2 Theorem

Let n > 1 be fixed, and 0 < k < n. Then we have the following useful identities:
(i) C(n,0) =C(n,n) =1,
() C(n,1)=C(n,n—1) =mn,

109

(ifi) C(1,2) = C(n,n—2) = "0,
(iv) C(nk) = C

) Proof

Statement (i) can be seen by inspection: the number of ways to pick zero objects
from a set of n of them is one; we just don’t pick anything at all. Similarly, there is
only one way to choose all n objects.

Statement (ii) falls along similar lines; there are n ways to pick exactly one object,
and n ways to pick n — 1 objects if we identify a selection of n — 1 objects with the
missing one.

Statement (iii) follows from the formula for combinatorial coefficients, but is worth
memorizing nonetheless since it appears quite often.

Statement (iv) is similar to the latter case of statement (ii): if you count all of the
ways to choose k objects from 7, and for each such choice identify the complement
of the corresponding set, you arrive at an enumeration of all ways of choosing
n — k objects from n.

With these ingredients alone, we can solve a wide array of counting problems; some
of which can be quite challenging despite the simplicity and familiarity of the tools
presented above.

o Example 4.2.3 Designing Secure Access Codes

A research lab issues one-time “access codes” of the form [L] [D] [S] [S] [N], where
e [L] is any of the 26 uppercase letters;
e [D] is one of the strings AI, DS, or ML;

e [S] is a symbol chosen from {#,$,!,@}, and the two S positions must be differ-
ent;

* [N] is a three-digit number with no repeated digit.

Suppose we wish to find the probability that a randomly generated access code
matches the pattern

[vowel] DS #@ [even number].

The sample space () consists of all possible codes, so by Theorem 4.2.1, we can
proceed in two steps by first counting all possible codes and then counting the
number of codes which match the desired pattern. By the product rule,

#0 =26 x 3 x P (3,2) x P (10,3)
—=26-3-4-3-720
— 673920.

110

Let A be the event that the randomly generated code matches the desired pattern.
Then again by the product rule,

#A =5 x 1 x 1 x #{even 3-digit numbers without repeating digits}.

To count the even numbers, notice that two criteria can be stated as: the 3-digits
are all distinct, and the last digit is even. Since there are five different even digits
0,2,4,6,8, by the sum rule, we can split all of the possibilities into five mutually
exclusive sets corresponding to each digit. In each case, there are P (9,2) different
ways to assign the leading two digits. Therefore,

#{even 3-digit numbers without repeating digits} =5 x P (9,2) =5 x 9 x 8.
In conclusion,
#A =5x5x9x8=1800

strings match our pattern. Therefore,

1800

(A) = =sss ~ 0.0026.

So there is approximately a 1 in 375 chance of matching the pattern.

) Example 4.2.4 Counting cards

A standard 52-card deck is thoroughly shuffled. We draw 7 cards at random.
Suppose we wish to find the probability that we obtain exactly three hearts. The
sample space has C(52,7) equally likely hands. To count the number of hands
which have exactly three hearts, we note that there are C (13,3) ways to select the
three hearts. Separately, there are C (39,4) ways to select the remaining four cards
while excluding all hearts cards from the rest of the deck. Thus

C(13,3) C(39,4)

~ 0.175.
C(52,7) el

P ({hand contains 3 hearts}) =

) Example 4.2.5 Committee Selection

A university Physics department has 8 men and 6 women. A committee of 5 people
is chosen uniformly at random. Suppose we wish to compute the probability that
the committee has at least 3 women. The sample space consists of

#0 = C (14,5)

equally likely committees. Let A denote the event that the committee contains at
least 3 women. By the sum rule (summing over exactly 3, 4, or 5 women),

#A = #{committees with three women} + #{committees with four women}
+ #{committees with five women}.

111

? Show that if A
and B are independent
then A and B¢ are also
independent.

The number of committees with exactly three women can be computed using the
product rule: there are C(6,3) ways of choosing the three women, and C(8,2)
ways of choosing the two men. Therefore,

#{committees with three women} = C (6,3) x C(8,2).

By extending this to the other two cases of four and five women, we conclude that
#A =C(6,3) C(8,2) +C(6,4) C(81)+C(6,5) C(8,0).

Therefore by Theorem 4.2.1,

IP (at least 3 women)
C(6,3) C(8,2) +C(6,4) C(8,1)+ C(6,5) C(8,0)
C(14,5)

686
= 2000 .343.

4.3 Independence and Conditional Probability

In many experiments, we encounter events that can occur without influencing each
other in any meaningful way. We say that two events A and B are independent if

P(ANB)=P(A)P(B).

Intuitively, learning that B occurred does not change the probability of A. More gener-
ally, a collection of events Ay, Ay, ..., A, is mutually independent if every finite intersec-
tion factorizes into the product of its probabilities.

) Example 4.3.1

Suppose we flip two fair coins. The sample space is
Q = {(H, H),(H,T), (T, H), (T,T)}, P ({w})= }1 ot e)

Let

A = {first coin is heads} = {(H,H), (H,T)},
B = {second coin is heads} = {(H,H), (T, H) }.

Then
P(A)=} P(B)=3 P(ANB)=P({(HH)}) =14
soP(ANB) =P (A)P(B) and A, B are independent. Now let

C = {at least one head} = {(H,H), (H,T),(T,H)}.

112

Then

Thus A and C are not independent.

Conditional probability allows us to compute probabilities of events when some ad-
ditional (usually partial) information about the outcome is known. For events A and B
with IP (B) > 0, the conditional probability of A given B is defined by

P (ANB)

P(A|B)= —F g

(29)

This can be thought of as “the probability that A occurs if we know B has occurred.”
Alternatively, we can think of B as in some sense replacing the ground sample space ()
(think: the universe of possibilities shrinks to only those which are accounted for in B)
and then IP (A | B) amounts simply to computing the probability of the outcomes which
are still possible (that is, A N B) and dividing it by the total probability of B to scale
things appropriately.

) Example 4.3.2
Suppose we draw two cards from a standard deck at random. Let

A = {second card is an ace},
B = {first card is an ace}.

Note first that P (B) = =, and that P (AN B) = CC((542’22)) = %3;, we have

()‘ll%

3
P(A|B) =221 = —.
5 51
Note that IP (A) = £ and P (A | B) = &, so that P (A | B) is about 25% smaller.
In other words, if we know that one ace has already been drawn, it is less likely
that a second is also drawn compared to the probability of the second card being
an ace on its own without knowledge of the first.

' Example 4.3.3

Let () be a sample space and A, B C () any two events. Then A, B are independent
if and only of P (A | B) = P (A). This follows from the definition of conditional
probability.

Example 4.3.3 reflects the intuitive idea that if events have outcomes that are com-

pletely independent of each other, knowledge of one’s occurrence does not change the
likelihood of the other.

113

@ This is often called
a partition of Q) and
can be thought of as
breaking () into several

smaller pieces

Rearranging Eq. (29) leads to a particularly useful fact for computing probabilities:
P(ANB)=P(A|B)P(B).

When an event A is difficult to analyze directly, we can “slice” the sample space into a
convenient partition {B;}*_, and evaluate A piece-by-piece within each slice. The law of
total probability formalizes this idea, expressing IP (A) as the sum of the smaller, and of-
ten easier-to-compute, probabilities IP (A N B;) (or IP (A | B;) IP (B;)) across the partition.
We illustrate Theorem 4.3.4 in Fig. 9.

' Theorem 4.3.4 Law of Total Probability

Let Q) be a sample space, and suppose that By, By, ..., By C Q) are disjoint events
such that Ui-;l B; = Q). Let A C Q) be any fixed event. Then the following two
equations hold:
k
P(A)=) P (ANB)
i=1
k
P(A)=) P(A|B)P(B).
i=1

The first equation is known as the intersection form of the law of total probability
and the second is known as the conditional form of the law of total probability.

J Proof

Since {B;}*_, are disjoint and U_; B; = Q, we can write

k k
A:AQQ:AH<U81~> =J(ANB)),
i=1 i=1

where the unions are pairwise disjoint. Using the additivity of the probability
measure,

P(A) = fuv(AmBi).
i=1

This is the intersection form. Next, for each i with IP (B;) > 0, apply the definition
of conditional probability:

P(ANB;)=P(A|B;)P(B).
Substituting into the previous sum yields
k k
P(A)=) P(ANB;) =) P(A|B)P(B;),

i=1 =Sl

which is the conditional form.

114

By B, Bs
L
A
ANB; ANB; ANBg
~—_
QO

Figure 9: An illustration of the intersection form of the law of total probability in The-
orem 4.3.4. Here, () is rendered as a rectangle which is partitioned into three events
By, By, B3. A generic event A is then split into three pieces based on its intersections with
each slice. The probability of A is thus the sum of the probabilities of the pieces.

Bayes’ theorem offers a principled way to invert conditional probabilities and com-
pute these probabilities when, for example, knowledge of IP (B | A) is readily found but
IP (A | B) is more difficult to compute.

J Theorem 4.3.5 Bayes’ Theorem

Let Q) be a sample space and A, B C Q) any two events such that P (A),IP (B) > 0.
Then

_P(B[A)P(4)
P(A|B)= P (B) :
Furthermore, we can write
P(B|A)P(A) P(B|A)P(A)
IP (B) - P(B|A)P(A)+P(B|A)P (Ac)’
J' Proof
Recall that the conditional probability of A given B is
_P(ANB)
P(A|B)= P(B)
Likewise, if P (A) > 0,
_P(ANB)
PRI Ty
Solving the latter for IP (A N B) and substituting into the former gives
_P(B[A)P(4)

115

@ This illustrates how
false positives dominate
when the condition is

rare.

which is Bayes’ theorem. To obtain the alternative denominator, apply Theo-
rem 4.3.4 to the event B with the partition {A, A}:

P(B)=P(BNA)+P(BNA°)=P(B|A)P(A)+P(B|A°)P(A°).
Substituting this expression for P (B) in the denominator above yields

P(B|A)IP(A)
(B|A)P(A)+TP(B| AP (A)

P(A|B) =5

) Example 4.3.6 Disease Testing

A disease affects 1% of a population. A test for the disease is 95% accurate in both
directions: that is, if a person is selected at random, then

IP (test is positive | person has the disease) = 0.95
IP (test is negative | person is healthy) = 0.95.

Suppose we wish to compute the probability that, if a person is selected at random
and tests positive, they actually have the disease. Let

D = {patient has disease},
T = {test is positive}.

Then P (T | D) = 0.95, P (D) = 0.01, and
P(T)=P(T|D)P(D)+P(T|D)P (D) = 0.95-0.01 + 0.05 - 0.99 = 0.059.
By Theorem 4.3.5,

0.95-0.01

Thus even a positive test yields only about a 16% chance of disease.

) Example 4.3.7 Example

Robert has a sock drawer containing exactly eight socks: one pair each of plain
socks, dotted socks, striped socks, and plaid socks. On Monday morning while
getting ready, Robert selects two socks at random from the drawer. Suppose we
wish to find the probability that the socks are matching. Since there are C (8,2)
ways to pick the two socks from the drawer, of which exactly four pairs are match-
ing. Therefore the probability is

4 _@E) _1

C(8,2) (8)(7) 7

Now suppose that after wearing the socks on Monday he places them in a laundry
basket separate from the drawer. On Tuesday morning, as Robert gets ready, he
selects another two socks at random from the six remaining in the drawer. Suppose

116

we wish to find the probability that the socks are matching on Tuesday: the key
is that we can condition on whether the socks were matching on Monday and use
this information to our advantage. Specifically,

IP (match on Tues.) = IP (match on Tues./match on Mon.) IP (match on Mon.)
+ P (match on Tues.|don’t match on Mon.) IP (don’t match on Mon.)

1
= P (match on Tues.|/match on Mon.) 5

1
+ P (match on Tues.|don’t match on Mon.) (1 — 5)

If the socks were matching on Monday, there are now three pairs of matching socks
in the drawer. So we have, by the same logic as before,

3 _ 0@ _1
C62) (6)(5) 5

P (match on Tues.|/match on Mon.) =

If the socks were not matching on Monday, there are now two pairs of matching
socks plus two mismatching socks. The total number of pairs is still C(6,2) but
now only two such pairs match. Therefore,

IP (match on Tues.|don’t match on Mon.) = C (2 %) = Eé;gg = 12—5 (30)

Thus in conclusion we have

2 6
o K (31)

1 1
P (match on Tues.) = EXstE

Finally, we often need to consider events that are independent only after conditioning

on some background information. Events A and B are conditionally independent given
C when

P(ANB|C)=P(A|C)P(B|C),

provided IP (C) > 0. This notion will be useful when we study Naive Bayes classifiers,
which will be covered in the next section.

) Example 4.3.8 Chess Tournament

A chess player is entering a weekend tournament and is about to play two games
on her first day. She is either having a good day (denoted “G”), or a bad day
(denoted “B”); and she is more likely to win if she’s having a good day. The
sample space of outcomes corresponding to her two games is given by

Q = {(G,W, W), (B,W, W), (G,L,W),(B,L,W),
(G,W,L),(B,W,L),(G,L,L),(B,L, L)},

where “W” denotes a win and “L” denotes a loss. For example, (B, W, L) denotes
the outcome where she has a bad day, wins the first game, and loses the second.

117

On a typical day, the probability she has a good or a bad day is given by

P({Good day}) =P ({(G,W,W),(G,L,W), ... }) = 0.6,
P({Bad day}) =P ({(B,W,W),(B,L,W), ...}) = 04.

Let A, B C Q) be the events given by
A = {she wins in round 1}, B = {she wins in round 2}.

Suppose that conditional on the player’s form, the outcomes of the two rounds are
independent, with

P(A | {Good day}) = P(B | {Good day}) = 0.7,
P(A | {Bad day}) = P(B | {Bad day}) = 0.4.

Now suppose we wish to compute the following probabilities:
P(A), P(B), P(ANB).

and determine whether A and B are independent unconditionally. By the condi-
tional independence assumption,

P(ANB | {Good day}) =0.7-0.7 = 0.49,
P (AN B | {Bad day}) = 0.4-0.4 = 0.16.

Hence by the law of total probability,

P(A)=06-07+04-04=042+0.16 = 0.58,
PP (B) = 0.6-0.7 + 0.4 - 0.4 = 0.58,
P(ANB) =06-049+0.4-0.16 = 0.294 + 0.064 = 0.358.

Since
P (A) P (B) = 0.58% = 0.3364 # 0.358 = P (AN B),

the events A and B are not independent (even though they are conditionally inde-
pendent given the form of the day).

4.4 Naive Bayes Classifiers

An extremely common data science problem is that of data classification: this occurs
when the target associated with a given input is a categorical variable (e.g. cat’ / "dog’,
or a digit between zero and nine). Naive Bayes is a simple and effective approach to the
data classification problem. The focus of this section will be to introduce and develop
this model within the framework of the modeling method in a systematic fashion; doing

so will take some careful setup.

For the most part, our philosophy of the modeling method carries over gracefully to
the probabilistic paradigm. We restate it here with some changes to reflect this view-

point.

118

@ Keep in mind as
you read on: our job
is now to figure out
how to pick the “best”
probability measure on
the sample space of
feature-label pairs.

@ The Modeling Method for Probabilistic Classifiers

1. Identify the sample space of input and output variables).
2. Use your training observations to design a suitable probability measure on ().

3. Form predictions by computing IP (y | x) for each possible target y.

Consider the following problem as a motivating example: we have a dataset of emails,
and we will use it to train a model to predict whether a given email is legitimate or spam.
We have a list of four keywords: free, win, project, and meeting; and for each of the
six emails in our dataset and each word, we record whether the word is present in the
text (represented by a 1) or not present in the text (represented by a zero.). The dataset
is shown in Fig. 10 and Fig. 11.

i1 2 3 4

word‘free win project meeting

Figure 10: The words cataloged in our spam email example.

L
=
n

label
spam
spam
Sspam
not spam
not spam
not spam

=

[~~~
=~
=

=

O rr Pk OO o

email 7 | X
1

~

o
W
=

OR OO R R

N Ul i W N

OO O R O R
—_O R OO~
cooOo R R RS

Figure 11: The dataset of emails used to train our classification model.

In this case, we have four input features corresponding to the different keywords
in our dictionary. For example, the fourth email in our dataset ¥; contains the words
“project” and “meeting” but neither of the words “free” or “win.”

In this setting, model the features ¥ as random observations from our probability
space; in particular they are sampled from the sample space of binary feature vectors. The
probability measure itself is to bed determined. We also model the labels y as random
observations sampled from the collection of all possible labels {0,1} with, again, some
unknown probability measure.

Denote the corresponding sample space of all possible input-output pairs by Q. If X
is the set of all d-dimensional binary feature vectors and) = {1,2,...,m} is a generic
set of m symbolic labels, then we can choose () to be the Cartesian product QO = X x).

119

@ Key ldea

Our main goal in this modeling task is to specify, for a given feature vector ¥, the
probabilities that the example belongs to each class under consideration. Let Y denote
the random label of the example (e.g., spam vs. not spam), and let X denote the fea-
ture vector, which we model as being random from among the d-dimensional binary
feature vectors. With this setup, we are looking to find the “best” choice for a proba-
bility mesure, giving rise to the predicted probabilities

]P({Y:y} | {X:x’}), ye{1,2,...,m.

It might help to keep this task front of mind.

The key ingredient in this particular model is the naive Bayes assumption: we as-
sume that features are conditionally independent given the class information of a target
example. In other words, if we know that an email is spam, the event that the email
contains the word “free” is independent of the event that the email contains the word
“win.”

Let (¥,y) € Q) be a specific outcome in our sample space (for example, a spam email
containing free and project) and let (X,Y) be a random observation. The naive Bayes

assumption is that our model’s probability measure satisfies
]P({X:sc*} | {Y:y}) =IIP ({xm — 7)Y | {Y:y}). (32)
j=1

Here, {X = X} is the event that we observe a specific outcome ¥ in our feature space. The
event {X() = #()} is the slightly more general event that we observe a feature vector
which has the same feature in a specific coordinate. Similarly, {Y = y} is the event that
we observe an example that has label y.

As mentioned above, what we really want in our model is actually the reverse: ideally,
our probabilistic model should give us a way to find

P({y =y} {X=7}),

since in practice we treat the observed features like an input to the trained model. By
Bayes’ theorem (Theorem 4.3.5) and Eq. (32), we can swap around the conditional prob-
abilities to write our probabilistic model in the form

P({Y =y} {X=x})
CP({X=g [{Y=y}) Py =y}

d

« [P ({X0 =20} | {Y =y}) P ({¥ =y}). (33)

j=1

120

The quantity on the left-hand side is what we’re looking for in a probabilistic model:
for each class y €), it describes the probability that our input belongs to this class
assuming we observe a specific set of input features. In the last line, we ignore the
denominator P ({we observe X}), since it will be the same for each class y, and will
therefore become redundant when we compute all of the class probabilities; we can
simply divide each term by the total sum to obtain probabilities.

Our next step is to identify how we should approach computing the term

P ({X0) =50} [{¥ =y}). (34)

To do this, we make use of our training data. We can estimate the probability in Eq. (34)
as follows: among all training examples with class label y, what proportion of examples
match the input feature ¥/)? This computation replaces the standard optimization step;
so if we can do this for each input feature X and class y, we have specified the predicted
class distribution for our example.

Keeping the spam email dataset in mind, suppose we have a new input email with
feature vector

v=[100 1"

indicating that the email contains the words free and meeting, but not the words win or
project. We wish to predict whether this email is spam (y = 1) or not spam (y = 0). To
apply the Naive Bayes classification model, we compute the probabilities:

P({Y:l} {X=[100 1}T}), 11)({1/:0} {X=[100 1]T}>.
Using Eq. (33), we have for y € {0,1},

P (0 =) | % =) <P (v =) TP (X0 =50} | (¥ = 3)).

]:
From our training data in Fig. 11, we estimate these probabilities separately for the two
classes.

o Class y = 1, spam: From Fig. 11, we have 3 spam emails (emails 1, 2, and 3).
Therefore we first have that

P((y=1}=>=

and given this, we can estimate the conditional probability

P((X0 =1} {r=1}) =2

since two spam emails out of three contain the word free. Continuing in this

P({X?=0}|{y=1})= %

P((XO =0} | {r=1})=2=1

P(XO =1} {r=1})=1
Thus,

P({y=1}|{X=[100 1]T})o<%.§.§.1.%:ﬁ

121

o Class y = 0, not spam: Similarly, from Fig. 11, we have 3 non-spam emails.

estimate
P(Y=0})=">=,
P({XV =1} [{y=0}) = %
P({(X® =0} {r=0}) =2 =1,
P ({X® =0} [{y =0}) = %
PR =1} {r=0}) =2
Hence,
]P({Y:O} | {)2:(1,0,0,1)}) m%%1§§:22—7
To find suitably normalized probabilities, divide each by their sum:
P ({Y —1} | {% = (1,0,0,1)}) - 1/2%2;/27 - % 0.333,
P({y=0}|{X=(1001)}) = 1/z+2;/27_§NO667

Therefore, the Naive Bayes classifier predicts that this email is not spam, with approxi-

mately a 66.7% probability.

o Example 4.4.1 Laplace Smoothing for News-Headline Classification

In practice the naive Bayes product in (33) can collapse to 0 whenever a particular
feature never appears for one of the classes in the training set. This is sometimes
called the zero-frequency problem. A technique called Laplace smoothing (also
called add-one smoothing) fixes the issue by pretending that we have observed
each possible outcome one extra time. Formally, for a sample (¥, y) we replace the

empirical estimate

#{samples in class y with matching feature¥()}
#{samples in class y}

P ({X0) = xD}{Y = y}) =

by the smoothed estimate

#{samples in class y with matching featurex))} + 1

P ({X0 =#D}|{y =y}) =

#{samples in class y} + 2

The 42 comes from adding one pseudo-count to both of the two possible feature
values 0 and 1. To see this in action, suppose we collect 20 short news headlines
and label each as Politics (y = 0) or Sports (y = 1). For every headline we record
five binary features indicating whether the words goal, coach, election, policy,

budget appear. The dataset is shown below:

122

headline i | goal coach election policy budget |y
1 0 0 1 1 1 0
2 0 1 1 1 0 0
3 0 0 1 1 1 0
4 1 1 0 0 0 1
5 1 1 0 0 0 1
6 0 1 0 0 0 1
7 1 1 0 0 0 1
8 1 0 0 0 0 1

Next, consider the headline:
“Goal tally dominates policy debate ahead of election”

whose feature vector is
=1 011 0],

indicating that the words goal, election, and policy are present. Without smooth-
ing, given the empirical probabilities above,

]P({X<1>:1|Y:0}):o, H’({X(3):1\Y:1}>:0,

so both class-likelihood products become 0 and the classifier fails to make a mean-
ingful prediction. Using the smoothed estimate, we obtain

P(or =01 =)« 55(Hd) (343) () (31) (53)

= 0.006912,
P ({Y =1|X= *}) o(%Ggi}z) (1724;12>0<102112) (102112> ((121;2);1)
= 0.000957.

Normalizing by their sum yields
P({Y:Oﬁ(: *}) ~ 0.88, P({Y:lp?:f}) ~ 0.12.

With Laplace smoothing, the classifier now makes a sensible prediction (Politics)
instead of being stymied by zero probabilities.

4.5 Exercises

Exercise 4.1
Consider tossing two fair six-sided dice, one red and one blue.

(a) Write the sample space () in set-builder notation and state its cardinality.

123

(b) Let

A = {the sum of the two dice is 7}
B = {at least one die shows a 5}

Write the events A and B explicitly as a collection of events in (). Then
compute P (A), P (B), and P (A U B).

(c) Verity the union rule for the events A and B computed in part (b).

Exercise 4.2

Fix d > 1 and recall the sample space of binary feature vectors Q = {0,1}¢ intro-
duced in Example 4.1.3. Suppose we impose the non-uniform probability measure

with A >0,

where |X| counts the number of 1’s in X.
(a) Show that the above assignment is a valid probability measure on).

(b) For fixed d and A, compute the probability that a random vector has exactly
k ones.

(c) When A = 1 the measure is uniform. What value of A makes the vector twice
as likely to have a 1 in any given coordinate as a 0?

Exercise 4.3

A country issues licence plates of the form AAA-NNN, where each A is an uppercase
letter excluding 0, I, and Q, and each N is a digit excluding the possibility of a
leading 0.

(a) How many distinct plates are possible?

(b) If a plate is chosen uniformly at random, what is the probability that all three
letters are vowels?

(c) What is the probability that the three-digit number is a strictly increasing
sequence (e.g. 135)?

(d) Combine the previous answers to find the probability that a random plate
has both properties.

Exercise 4.4

A department has 9 professors, 5 graduate students, and 4 staff members. A
committee of 6 people is formed uniformly at random.

124

(@) In how many ways can the committee be formed?

(b) What is the probability the committee contains exactly 2 professors, 3 gradu-
ate students, and 1 staff member?

(c) What is the probability that the committee contains at least one person from
each group?

Exercise 4.5
From a standard 52-card deck you draw 5 cards at random.

(a) Compute the probability of getting a full house (three of one rank and two of
another).

(b) Compute the probability of getting a flush (all five cards are the same suit,
ranks arbitrary).

(c) Which hand is more likely, a full house or a flush? Support your answer with
calculations.

Exercise 4.6

A fair coin is flipped three times. Let the sample space be
O={H,T)}>

Define the following events:

A = {first flip is H},
B = {exactly two heads appear},
C = {third flip is T}.

(a) Write each event as an explicit subset of ().
(b) Compute P (A), P (B), P (C), and all pairwise intersections.
() Determine which pairs among {A, B, C} are independent.

(d) Are the three events mutually independent? Justify your answer.

Exercise 4.7

A student gets to campus by deciding at random each day from among one of
three modes:

M1 = {bus},
M, = {bicycle},
Mj; = {car},

125

with
0.5,
P (M) = 0.3,
0.2.

Let L = “the student arrives late.” Conditional probabilities collected over the
semester are

P (L| M) = 0.15,
P(L | Mp) = 0.05,
PP (L | M) = 0.10.

(a) Use the law of total probability to compute IP (L).

(b) Compute the probability that she came by bus given that she arrived late.

Exercise 4.8

A factory produces light bulbs. Each bulb first passes an automated test and then
a manual inspection if it failed the first. After selecting a light bulb at random, let

A = {bulb ultimately passes quality control},
T = {bulb passes the automated test}.

Historical records show that

PP (T) = 0.92,
P(A|T)=1,
P (A | T°) = 0.40.
(a) Verify that {T,T¢} is a partition of () and compute IP (A).

(b) Compute P (T | A), the probability a randomly selected approved bulb passed
the automated test.

(c) Management claims “more than 95% of approved bulbs passed only the au-
tomated stage.” Is the claim supported? Explain briefly.

Exercise 4.9

A simple spam filter flags an email as suspicious if it contains the word urgent.
For a randomly selected email, database records suggest that

P (email is spam) = 0.12,
P (urgent appears | spam) = 0.30,
P (urgent appears | not spam) = 0.04.

(a) Compute the probability that a random email contains the word urgent.

126

(b) Given that an email does contain urgent, use Bayes’ theorem to compute the
posterior probability it is spam.

(c) The filter quarantines every message with urgent. What fraction of quar-
antined emails are actually not spam? Comment on the effectiveness of this
rule.

Exercise 4.10

A new screening test detects a rare genetic trait found in 0.7% of the population.
Clinical trials report:

IP (positive | trait) = 0.98,
PP (negative | no trait) = 0.93.

(a) If a randomly chosen individual tests positive, what is the probability they
actually carry the trait?

(b) If the same individual tests negative, what is the probability they are trait-
free?

(c) Discuss—in two or three sentences—whether this test is more reliable for
ruling the presence of the trait in or out.

Exercise 4.11

A rare disease D affects 1% of the population. A randomly selected individual is
monitored in a clinic for the appearance of two symptoms:

S1 = {high fever},
Sy = {skin rash}.

Clinical studies report that these symtoms appear with the following frequencies:

PP (S; | D) = 0.80,
P (S, | D) = 0.75,
IP (S1 | DY) = 0.05,
PP (S, | DY) = 0.02.

Assume S; and S, are conditionally independent given D and given D¢.
(a) Compute P (D | S1) and IP (D | Sp).
(b) Using the conditional independence assumption, compute IP (D | S; N Sy).

(c) Are the events S; and S, unconditionally independent? Justify quantitatively.

127

Exercise 4.12

The table below contains 12 short movie reviews that have been manually labeled
as either positive (y = 1) or negative (y = 0). For every review five binary features
are recorded indicating whether the corresponding word appears in the text:

review i | great boring plot acting slow |y
1 1 0 1 1 0 1
2 1 0 1 0 0 1
3 0 0 1 1 0 1
4 1 0 0 1 0 1
5 0 1 0 0 1 0
6 0 1 1 0 1 10
7 0 0 0 1 1 10
8 1 0 0 0 1 0
9 0 1 1 1 0 0
10 1 1 1 0 0 0
11 0 1 1 1 0 1
12 0 0 1 0 1 1

Let the feature vector X = (X(l), xX@ x06) x@) X(5)) correspond to the presence
of the words great, boring, plot, acting, slow, respectively, and let Y € {0,1}
denote the sentiment class.

(a) Compute the probabilities P ({Y = 1}) and P ({Y = 0}) from the table.

(b) Consider a new review whose feature vector is
=1 010 1

Using the mnaive Bayes classifier, compute the class likelihoods
P ({Y =0 {X = *}) and P ({Y =1}{X = 55}) If you need to use
Laplace smoothing, clearly indicate why.

(c) Which class does the classifier predict?

Exercise 4.13

Researchers on planet Zog are building a classifier that decides whether a brand
new jelly bean is YumMmy (y = 1) or Yucky (y = 0). For each candy they record five
quirky binary features:

Meaning of {X() =1}
the bean glows in the dark (glow)
the bean fizzes when bitten (fizz)

Feature j
1
2
3 the bean feels slimy (slimy)
4
5

the bean crunches loudly (crunch)
the bean whistles when shaken (whistle)

The training data of 14 beans are listed below.

128

beani | glow fizz slimy crunch whistle | y
1 1 1 0 1 0 1
2 1 0 0 1 0 1
3 0 1 0 0 0 1
4 1 1 0 0 0 1
5 0 0 1 0 1 0
6 0 1 1 1 0 0
7 0 0 1 0 0 0
8 1 0 1 0 1 0
9 0 1 1 0 1 0

10 1 0 1 1 1 0
11 0 1 0 1 0 1
12 1 0 0 0 0 1
13 0 0 1 1 1 0
14 1 1 1 0 1 0

(a) Compute the probabilities P ({Y = 1}) and P ({Y = 0}) from the table.
(b) A brand-new jelly-bean has feature vector

—

=1[010 0 1 (fizz+whistle only).
Estimate the probabilities P ({Y =0}{X = 3?}) and P ({Y — X = 55})
If you need to use Laplace smoothing, clearly indicate why.

(c) Which class does the classifier predict?

Exercise 4.14

Consider flipping two fair coins (one gold and one silver) and spinning a fair three-
sided spinner labelled {1,2,3}.

(a) Write the sample space (2 and state its cardinality.
(b) Let
A = {the spinner shows an even number}, B = {at least one of the coins shows heads}.

Write the events A and B explicitly as subsets of Q3. Compute P (A), P (B),
and P (AU B).

(c) Verity the union rule
P(AUB) = P(A) + P(B) — P(ANB)

using your computations.

129

Exercise 4.15

Let Q) be a sample space and A, B,C C () given events. Prove the inclusion-exclu-
sion principle

P(AUBUC)=P(A)+P(B)+P(C)
—P(ANB)—P(BNC)—-P(ANC)
+P(ANBNC),

for example, by using the union rule multiple times.

Exercise 4.16

An L.T. access code has the form LL-DDD, where each L is an uppercase letter ex-
cluding 0, I, and Q, and each D is a digit from 0 to 9. Letters and digits are chosen
independently and uniformly at random.

(a) How many distinct access codes are possible?
(b) What is the probability that both letters are consonants?

(c) What is the probability that the three-digit sequence is strictly increasing (for
example, 047 or 158)?

(d) What is the probability that an access code has both properties simultane-
ously?

Exercise 4.17

A natural history museum has the following distinct taxidermy mounts in its col-

lection:
Birds: By, By, B3, By, Bs (where By, B, are “rare”),

Mammals: Ml, Mz, M3, M4,
Reptiles: Ry, Ry, R3.

They wish to select exactly 7 mounts and arrange them in a row on a shelf, subject
to the rules:

* Type-coverage: At least one bird, one mammal, and one reptile must appear.
* Reptile adjacency: No two reptile mounts are adjacent.

e Rare-bird condition: The two rare birds B; and B, are either both included or
both excluded.

(a) By conditioning on whether Bj, By are in or out, and using inclusion-
exclusion or standard “gaps” arguments for the reptiles, derive a closed-form
expression (in terms of binomial coefficients and factorials) for the total num-
ber of valid arrangements.

(b) Evaluate your expression to obtain the exact numerical count.

130

(c) Suppose instead the chosen 7 mounts are placed around a circular display
(so two arrangements that differ by a rotation are considered the same). How
many valid circular arrangements are there?

131

5 Appendices

A Calculus Background

o Theorem A.1 Local Extrema Occur at Critical Points

Let f be a function defined on an interval in IR, and let ¢ be a point in the domain
of f. If f has a local minimum or a local maximum at ¢, then c is a critical point of
f. In particular, one of the following must hold:

e f'(c)=0,or

e f’(c) does not exist.

J Theorem A.2 Second Derivative Test

Let f be a twice-differentiable function on an interval containing a critical point
x = ¢, where f'(c¢) = 0. Then:

1. If f”(c) > 0, then f has a local minimum at x = c.
2. If f”(c) <0, then f has a local maximum at x = c.

3. If f"(c) = 0, the test is inconclusive, and x = ¢ may be a local minimum,
local maximum, or neither.

o Theorem A.3 Second Derivative Test for Functions of Two Variables

Let f: R? — R be twice differentiable and let (x0,Y0) be a critical point of f, i.e.,
such that V f(xo,y9) = 0. Define the Hessian matrix H at (xo, 1) to be given by
the 2 x 2 matrix of second-order partial derivatives as follows:

& F(x0,v0) 3% f (X0, o)
H(xo,y0) = (aa,ng 0Y0) gy (ot :

ayax/ (X0, o) %f (X0, ¥0)

and let

2f 2f Pf :
D — de(H(u,0)) = 5.5 (v0.10) 5.4 0 = (330, 90)
Then, the following statements hold:

(i) If %f(xo,yo) > 0and D > 0, f has a local minimum at (xo, yo);

132

(ii) If %f(xo,yo) < 0and D > 0, f has a local maximum at (xo, yo);
(iii) If D < 0, (x0,Yo) is a saddle point;

(iv) And if D = 0, the test is inconclusive.

The following result extends the second derivative test to functions of many variables;
we include it here mainly for reference.

o Theorem A.4 Second Derivative Test for Functions of Several Variables

Let f : R” — R be a twice continuously differentiable scalar-valued function
defined on R” and let Xy € IR" be a critical point where V(%)) = 0. Assume the
Hessian matrix Hf (Xp) is invertible. Then:

1. If Hf(Xy) is positive definite (equivalently, all eigenvalues are strictly posi-
tive), then f attains a strict local minimum at ¥y.

2. If Hf (X)) is negative definite (equivalently, all eigenvalues are negative), then
f attains a strict local maximum at X.

3. If Hf(Xp) has both positive and negative eigenvalues, then Xy is a saddle
point of f.

4. In all other cases, the test is inconclusive.

B Linear Algebra Background

) Definition B.1 Dot product

If X,ij € R" are any vectors, then we define their dot product (also called their
inner product) by the formula

) Theorem B.2 Properties of the vector dot product

= — =

Let X,1/,Z € R" be any fixed vectors. Then the dot product satisfies the following
properties:

1. Symmetry:

133

2. Bilinearity:
(aX+by) Z2=a(Z"2)+b({'2), X (aj+b2) =a(X'§)+b(X'2).

3. Positive-definiteness:

4. Induced norm:

J Theorem B.3 Cauchy-Schwarz Inequality

Let %,i/ € IR" be any two vectors. Then the dot product X' of x and y satisfies
—pT — — —
Xy < %[l

with equality if and only if X and i/ are linearly dependent.

) Theorem B.4 Rank-Nullity Theorem

Let A € R™*" be a fixed m x n matrix. Then

dim(kerA) + dim(imA) = n.

134

O Index

p-loss, 12

absolute loss, 12
augmented feature
vectors, 46

Binary variables, 5
binomial coefficients,
109

Categorical variables, 5
Combinatorics, 108
complement trick, 106
conditional probability,

113
conditionally

independent, 117
constant model, 11
continuous sample

spaces, 105
convex function, 75
convex set, 75

data classification, 118

data transformation, 73

degree, 69

design matrix, 46

design vectors, 46

deterministic models,
104

discrete sample spaces,
105

dot product, 133

empirical risk function, 7
entropy loss, 16
epigraph, 75

event, 104

factorial, 109

feature dimension, 18
features, 5

finite difference

approximation,
82

general linear model, 52
gradient descent
algorithm, 79

hyperparameter, 84

inclusion-exclusion
principle, 130

independent, 112

inner product, 133

input variables, 5

interaction design
matrix, 74

interaction terms, 73

intercept, 34

intercept (or bias) vector,
52

intercept-free multiple
linear regression
model, 63

Lagrange multiplier, 92

Laplace smoothing, 122

Lasso regression, 84

law of total probability,
114

learning rate, 80

line of best fit, 34

linear model, 6

loss function, 6

maximum risk, 28
mean squared error
(MSE), 40
midrange, 28
model, 5
Model training, 6
multiple linear
regression
model, 44
mutually independent,
112

naive Bayes assumption,
120

normal equations, 35

Numerical variables, 5

output variables, 5
overfitting, 72

Parameters, 5

135

partition, 114

penalty, 84

polynomial feature
vector, 69

polynomial regression,
69

probability measure, 104

Regularization, 84
Ridge regression, 84
risk function, 7

sample space, 104

sample space of binary
feature vectors,
107

simple linear model, 34

Simple linear regression,
34

simple polynomial
regression
model, 69

slope, 34

square loss, 6, 11

stationary conditions, 94

strictly convex function,
76

supervised learning, 11

target dimension, 18
testing data, 7
training data, 7
transformed design
matrix, 70

Underfitting, 68
union rule, 106

unsupervised learning,
12

vector-valued constant
model, 18, 41

vector-valued simplified
linear model, 21

zero-frequency problem,
122

	Chapter 1. Foundational Concepts
	 1.1. The modeling method
	 1.2. The constant model and loss functions
	 1.3. Vector-valued features and targets
	 1.4. Exercises
	Chapter 2. The Linear Model
	 2.1. Simple Linear Regression: Scalar Features, Scalar Targets
	 2.2. Warmup: The constant model revisited
	 2.3. Multiple Linear Regression: Vector Features, Scalar Targets
	 2.4. The General Linear Model: Vector Features, Vector Targets
	 2.5. Exercises
	Chapter 3. More on Modeling
	 3.1. Polynomial Regression and Interactions
	 3.2. Convexity & Gradient Descent
	 3.3. Regularization: Ridge and Lasso Regression
	 3.4. Bonus: Constrained optimization
	 3.5. Exercises
	Chapter 4. Modeling with Probability
	 4.1. Sample Spaces and Probability Measures
	 4.2. Counting and Combinatorics
	 4.3. Independence and Conditional Probability
	 4.4. Naïve Bayes Classifiers
	 4.5. Exercises
	Chapter 5. Appendices
	 A. Calculus Background
	 B. Linear Algebra Background
	Chapter 6. Index

